移動機器人自主工作需要哪些傳感器?
發(fā)布時間:2018-09-17 責(zé)任編輯:wenwei
【導(dǎo)讀】在許多情況下,機器人平臺的自主工作能力是一項極為重要的特性,即通過導(dǎo)航系統(tǒng)來監(jiān)視并控制機器人從一個位置移到下一位置的運動。管理位置和運動時的精度是實現(xiàn)高效自主工作的關(guān)鍵因素,MEMS(微機電系統(tǒng))陀螺儀可提供反饋檢測機制, 對優(yōu)化導(dǎo)航系統(tǒng)性能非常有用。
Adept MobileRobots項目經(jīng)理Seth Allen認為,地面機器人系統(tǒng)必須常常處理"枯燥、骯臟、危險"的工作。換言之,機器人系統(tǒng)通常用于人工介入成本過高、危險過大或者效率過低的任務(wù)。在許多情況下,機器人平臺的自主工作能力是一項極為重要的特性,即通過導(dǎo)航系統(tǒng)來監(jiān)視并控制機器人從一個位置移到下一位置的運動。管理位置和運動時的精度是實現(xiàn)高效自主工作的關(guān)鍵因素,MEMS(微機電系統(tǒng))陀螺儀可提供反饋檢測機制, 對優(yōu)化導(dǎo)航系統(tǒng)性能非常有用。
圖1中所示的Seekur機器人系統(tǒng)就是一個采用先進MEMS器件來改善導(dǎo)航性能的自主系統(tǒng)。
圖1. Adept MobileRobots公司的Seekur系統(tǒng)。
# 機器人導(dǎo)航概述
機器人的移動通常是從管理機器人總體任務(wù)進度的中央處理器發(fā)出位置變化請求時開始的。導(dǎo)航系統(tǒng)通過制定行程計劃或軌跡以開始執(zhí)行位置變化請求。行程計劃需考慮可用路徑、已知障礙位置、機器人能力及任何相關(guān)的任務(wù)目標(biāo)。(例如,對于醫(yī)院里的標(biāo)本遞送機器人,遞送時間非常關(guān)鍵。)行程計劃被饋入控制器,后者生成傳動和方向配置文件以便進行導(dǎo)航控制。這些配置文件可根據(jù)行程計劃執(zhí)行動作和進程。該運動通常由若干檢測系統(tǒng)進行監(jiān)控,各檢測系統(tǒng)均產(chǎn)生反饋信號;反饋控制器將信號組合并轉(zhuǎn)換成更新后的行程計劃和條件。圖2是一般導(dǎo)航系統(tǒng)的基本框圖。
圖2. 一般導(dǎo)航系統(tǒng)框圖。
開發(fā)導(dǎo)航系統(tǒng)的關(guān)鍵步驟始于充分了解每種功能,尤其需要重視其工作目標(biāo)和限制。各項功能通常都有一些明確界定且易于執(zhí)行的因素,但也會提出一些需要加以處理的具有挑戰(zhàn)性的限制。某些情況下,這可能是一個反復(fù)試探的過程,即識別和處理限制的同時又會帶來新的優(yōu)化機遇。通過一個實例可以清楚說明這一過程。
# Adept MobileRobots Seekur機器人
Adept MobileRobots Seekur2是一款采用慣性導(dǎo)航系統(tǒng) (INS)的自主機器人,參見圖3。該車輛具有4輪傳動系統(tǒng),每個車輪均有獨立轉(zhuǎn)向和速度控制能力,可在任何水平方向上靈活地移動平臺。此能力對于倉庫交貨系統(tǒng)、醫(yī)院標(biāo)本/補給品遞送系統(tǒng)和軍隊增援系統(tǒng)等新興應(yīng)用中的機器人車輛非常有用。
圖3. Adept MobileRobots Seekur導(dǎo)航系統(tǒng)。
正向控制
機器人本體命令,即主要誤差信號, 代表軌跡規(guī)劃器提供的行程計劃與反饋檢測系統(tǒng)提供的行程進度更新信息之間的差異。這些信號被饋入逆向運動學(xué)系統(tǒng),后者將機器人本體命令轉(zhuǎn)換成每個車輪的轉(zhuǎn)向和速度配置文件。這些配置文件使用阿克曼轉(zhuǎn)向關(guān)系,進行計算,整合了輪胎直徑、表面接觸面積、間距和其他重要幾何特性。利用阿克曼轉(zhuǎn)向原理和關(guān)系,上述機器人平臺可創(chuàng)建以電子方式鏈接的轉(zhuǎn)向角度配置文件,類似于許多汽車轉(zhuǎn)向系統(tǒng)中使用的機械齒輪-齒條系統(tǒng)。由于這些關(guān)系是以遠程方式整合在一起的,不需要以機械方式鏈接車軸,因而有助于最大程度減小磨擦和輪胎滑移,減少輪胎磨損和能量損耗,實現(xiàn)簡單的機械鏈接無法完成的運動。
車輪驅(qū)動和轉(zhuǎn)向系統(tǒng)
每個車輪均有一個驅(qū)動軸,通過變速箱以機械方式連接至驅(qū)動馬達,同時通過另一個變速箱耦合至光學(xué)編碼器,即測程反饋系統(tǒng)的輸入端。轉(zhuǎn)向軸 將車軸耦合至另一伺服馬達,該馬達負責(zé)確立車輪的轉(zhuǎn)向角度。轉(zhuǎn)向軸還將通過變速箱耦合至第二個光學(xué)編碼器,也即測程反饋系統(tǒng)的另一個輸入端。
反饋檢測和控制
導(dǎo)航系統(tǒng)使用一個增強的Kalman filter3,通過結(jié)合多個傳感器的數(shù)據(jù)來估算行程圖上機器人的姿態(tài)。Seekur上的測程數(shù)據(jù)從車輪牽引和轉(zhuǎn)向編碼器(提供轉(zhuǎn)換)和MEMS陀螺儀(提供旋轉(zhuǎn))獲得。
測程
測程反饋系統(tǒng)利用光學(xué)編碼器對驅(qū)動和轉(zhuǎn)向軸旋轉(zhuǎn)的測量結(jié)果來估算機器人的位置、駛向和速度。在光學(xué)編碼器中,用一個碟片阻擋內(nèi)部光源,或者通過數(shù)千個微小窗口讓光源照射在光傳感器上。碟片旋轉(zhuǎn)時,便會產(chǎn)生一系列電脈沖,這些脈沖通常被饋入計數(shù)器電路。每旋轉(zhuǎn)一圈的計數(shù)次數(shù)等于碟片內(nèi)的槽孔數(shù)目,因此可從編碼器電路的脈沖計數(shù)計算旋轉(zhuǎn)數(shù)(包括小數(shù))。圖4提供了將驅(qū)動軸旋轉(zhuǎn)計數(shù)轉(zhuǎn)換成線性位移 (位置) 變化的圖形參考和關(guān)系。
圖4. 測程線性位移關(guān)系。
每個車輪的驅(qū)動軸和轉(zhuǎn)向軸編碼器測量結(jié)果在正向運動學(xué)處理器中用阿克曼轉(zhuǎn)向公式進行組合,從而產(chǎn)生駛向、偏轉(zhuǎn)速率、位置和線速度等測量數(shù)據(jù)。
該測量系統(tǒng)的優(yōu)點在于其檢測功能直接與驅(qū)動和轉(zhuǎn)向控制系統(tǒng)相結(jié)合,因此可精確得知驅(qū)動和轉(zhuǎn)向控制系統(tǒng)的狀態(tài)。不過,除非可參考一組實際坐標(biāo),否則該測量系統(tǒng)在車輛實際速度和方向方面的精度有限。主要限制(或誤差源)在于輪胎幾何形狀一致性(圖4中D的精度和波動),以及輪胎與地面之間的接觸中斷。輪胎幾何形狀取決于胎冠一致性、胎壓、溫度、重量及在正常機器人使用過程中可能發(fā)生變化的所有條件。輪胎滑移則取決于偏轉(zhuǎn)半徑、速度和表面一致性。
位置檢測
Seekur系統(tǒng)使用多種距離傳感器。對于室內(nèi)應(yīng)用,該系統(tǒng)采用270°激光掃描器為其環(huán)境構(gòu)建映射圖。激光系統(tǒng)通過能量返回模式和信號返回時間測量物體形狀、尺寸及與激光源的距離。在映射模式中,激光系統(tǒng)通過將工作區(qū)內(nèi)多個不同位置的掃描結(jié)果組合,描述工作區(qū)特性(圖5)。這樣便產(chǎn)生了物體位置、尺寸和形狀的映射圖,作為運行時掃描的參考。激光掃描器功能結(jié)合映射信息使用時,可提供精確的位置信息。該功能如果單獨使用,會存在一定限制,包括掃描時需要停機以及無法處理環(huán)境變化等等。在倉庫環(huán)境中,人員、叉車、托盤搬運車及許多其他物體常常會改變位置,這可能影響到達目的地的速度,以及到達正確目的地的精度。
圖5. 激光映射。
對于室外應(yīng)用,Seekur使用全球定位系統(tǒng) (GPS)進行位置測量(圖6)。全球定位系統(tǒng)通過至少四個衛(wèi)星的無線電信號傳播時間對地球表面上的位置進行三角測量,精度可達±1 m以內(nèi)。不過,這些系統(tǒng)難以滿足無阻擋的要求,可能受建筑、樹木、橋梁、隧道及許多其他類型的物體影響。某些情況下,室外物體位置和特性已知("城市峽谷"), 則在GPS運行中斷時也可使用雷達和聲納來協(xié)助進行位置估算。即便如此,當(dāng)存在動態(tài)條件時,例如汽車經(jīng)過或正在施工,效果常常會受到影響。
圖6. GPS位置檢測。
MEMS 角速率檢測
Seekur系統(tǒng)使用的MEMS陀螺儀可直接測量Seekur關(guān)于偏航(垂直)軸的旋轉(zhuǎn)速率,該軸在Seekur導(dǎo)航參考坐標(biāo)系內(nèi)與地球表面垂直。用于計算相對駛向的數(shù)學(xué)關(guān)系式是固定時間內(nèi)(t1 至t2)角速率測量結(jié)果的簡單積分。
該方法的主要優(yōu)勢之一是連接至機器人機架的陀螺儀可測量車輛的實際運動,而無需依靠齒輪比、齒輪隙、輪胎幾何形狀或表面接觸完整性。不過,駛向估算需要依靠傳感器精度,而該精度取決于偏置誤差、噪聲、穩(wěn)定性和靈敏度等關(guān)鍵參數(shù)。固定偏置誤差轉(zhuǎn)換為駛向漂移速率,如包含偏置誤差ωBE的下列關(guān)系式所示:
偏置誤差可分為兩種:當(dāng)前誤差和條件相關(guān)誤差。Seekur系統(tǒng)估算的是未運動時的當(dāng)前偏置誤差。這要求導(dǎo)航電腦能夠識別未執(zhí)行位置變化命令的狀態(tài),同時還要方便進行數(shù)據(jù)收集偏置估算和校正系數(shù)更新。該過程的精度取決于傳感器噪聲以及可用于收集數(shù)據(jù)并構(gòu)建誤差估算的時間。如圖7所示,Allan方差曲線提供了偏置精度與求均值時間之間的簡便關(guān)系式,進而確定了ADIS16265的關(guān)系式。ADIS16265是一款與Seekur系統(tǒng)目前所用的陀螺儀類似的iSensor® MEMS器件。本例中,Seekur可將20秒內(nèi)的平均偏置誤差減小至0.01°/秒以下,并可通過在約100秒的周期內(nèi)求均值來優(yōu)化估算結(jié)果。
圖7. ADIS16265 Allan方差曲線。
Allan 方差4 關(guān)系式還有助于深入了解最佳積分時間(τ = t2 – t1). 該曲線上的最低點通常被確定為運行中偏置穩(wěn)定度。通過設(shè)置積分時間τ,使其等于與所用陀螺儀的Allan方差曲線上最低點相關(guān)的積分時間,可優(yōu)化駛向估算結(jié)果。
包括偏置溫度系數(shù)在內(nèi)的條件相關(guān)誤差會影響性能,因此它們可決定需要每隔多久停止一次機器人的運行,以更新其偏置校正。使用預(yù)校準(zhǔn)的傳感器有助于解決最常見的誤差源,例如溫度和電源變化。例如,將ADIS16060 改為預(yù)校準(zhǔn)的ADIS16265可能會增加尺寸、價格和功率,但可以將相對于溫度的穩(wěn)定性提高18倍。對于2°C溫度變化,ADIS16060的最大偏置為0.22°/秒,而ADIS16265只有0.012°秒。
如以下關(guān)系式所示靈敏度 誤差源與實際駛向變化成正比:
商用MEMS傳感器的額定靈敏度誤差通常在±5%至±20%以上,因此需要進行校準(zhǔn)以減小這些誤差。例如ADIS16265和ADIS16135等預(yù)校準(zhǔn)MEMS5 陀螺儀的額定誤差小于±1%,在受控環(huán)境中甚至可以達到更高性能。
# 應(yīng)用范例:
倉庫庫存交貨
倉庫自動化系統(tǒng)目前使用叉車和傳送帶系統(tǒng)移動材料,以管理庫存并滿足需求。叉車需要直接人為控制,而傳送帶系統(tǒng)則需要定期維護。為了最大化倉庫價值,許多倉庫正在進行重新配置,從而為自主機器人平臺的應(yīng)用敞開了大門。一組機器人僅需要更改軟件、對機器人導(dǎo)航系統(tǒng)進行再培訓(xùn)就能適應(yīng)新任務(wù),完全不需要實施大量工程作業(yè)來改造叉車和傳送帶系統(tǒng)。倉庫交貨系統(tǒng)中的關(guān)鍵性能要求是機器人必須能夠保持行程模式的一致性,可在有障礙物移動的動態(tài)環(huán)境下安全執(zhí)行機動動作,并且保證人員安全。為了說明在此類應(yīng)用中MEMS陀螺儀反饋對Seekur的價值,Adept MobileRobots用實驗方式分別展示了在不使用(圖8)和使用(圖9)MEMS陀螺儀反饋的情況下,Seekur保持重復(fù)路徑的能力。應(yīng)注意,為了研究MEMS陀螺儀反饋的影響,該實驗未采用GPS或激光掃描校正。
圖8. 未使用MEMS陀螺儀反饋時的Seekur路徑精度。
圖9. 使用MEMS陀螺儀反饋時的Seekur路徑精度。
比較圖8和圖9中的路徑軌跡,很容易看出兩者在保持路徑精度上的差異。應(yīng)注意,這些實驗中采用的是早期MEMS技術(shù),支持~0.02°/秒的穩(wěn)定度。目前的陀螺儀在相同成本、尺寸和功率水平下性能可提高2到4倍。隨著這一趨勢的延續(xù),在重復(fù)路徑上維持精確導(dǎo)航的能力將繼續(xù)改善,這將為開發(fā)更多市場和應(yīng)用(例如醫(yī)院標(biāo)本/補給品遞送)帶來機遇。
補給品護送
目前美國國防高級研究計劃局(DARPA)在提案中仍強調(diào)更多地利用機器人技術(shù)來提升軍力。補給品護送便是這類應(yīng)用的一個范例,此時軍事護送隊伍暴露于敵方威脅之下,同時不得不按可預(yù)測的模式緩慢移動。精確導(dǎo)航讓機器人(如Seekur)可在補給品護送方面承擔(dān)更多責(zé)任,減少途中人員的安全威脅。一個關(guān)鍵性能指標(biāo)是對GPS中斷情況的管理能力,此時MEMS陀螺儀駛向反饋特別有用。最新Seekur導(dǎo)航技術(shù)正是針對這一環(huán)境而開發(fā)的,它使用MEMS慣性測量單元(IMUs)6提高了精度,并且能在未來不斷采納地形管理和其他功能領(lǐng)域的新技術(shù)成果。
為了測試該系統(tǒng)在使用和不使用IMU時的定位性能,對室外路徑誤差進行了記錄和分析。圖10比較了僅使用測程法時相對于真實路徑(源自GPS)的誤差與在卡爾曼濾波器內(nèi)結(jié)合使用測程法與IMU時的誤差。后者的位置精度是前者的近15倍。
圖10. 使用測程法/IMU(綠色)與僅使用測程法(藍色)的Seekur位置誤差。
# 結(jié)論
機器人平臺開發(fā)人員發(fā)現(xiàn),MEMS陀螺儀技術(shù)為改善導(dǎo)航系統(tǒng)方向估算和總體精度提供了經(jīng)濟高效的方法。預(yù)校準(zhǔn)的系統(tǒng)就緒型器件使得簡單的功能集成得以實現(xiàn),有利于開發(fā)工作順利起步,并讓工程師可集中精力開展系統(tǒng)優(yōu)化。隨著MEMS技術(shù)持續(xù)改善陀螺儀噪聲、穩(wěn)定性和精度指標(biāo),精度和控制水平將不斷提高,從而可為自主機器人平臺繼續(xù)拓展新的市場。諸如Seekur等系統(tǒng)的下一代開發(fā)工作可從陀螺儀過渡到完全集成的MEMS IMU/6自由度(6DoF)傳感器。雖然面向偏航的方法很有用,但世界畢竟不是平面的;目前及未來的許多其他應(yīng)用均可利用MEMS IMU進行地形管理和進一步的精度改進,并通過三個陀螺儀實現(xiàn)完全對準(zhǔn)反饋和校正。
推薦閱讀:
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗法則?
- 一文看懂電壓轉(zhuǎn)換的級聯(lián)和混合概念
- 第12講:三菱電機高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計
- 貿(mào)澤電子持續(xù)擴充工業(yè)自動化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計簡介
- 如何通過基本描述找到需要的電容?
技術(shù)文章更多>>
- 瑞典名企Roxtec助力構(gòu)建安全防線
- 貿(mào)澤與Cinch聯(lián)手發(fā)布全新電子書深入探討惡劣環(huán)境中的連接應(yīng)用
- 第二十二屆中國國際軟件合作洽談會在成都順利舉行
- 混合信號示波器的原理和應(yīng)用
- 功率器件熱設(shè)計基礎(chǔ)(十)——功率半導(dǎo)體器件的結(jié)構(gòu)函數(shù)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
空心線圈
控制變壓器
控制模塊
藍牙
藍牙4.0
藍牙模塊
浪涌保護器
雷度電子
鋰電池
利爾達
連接器
流量單位
漏電保護器
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢想電子
模擬鎖相環(huán)
耐壓測試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池