從傳感器到算法原理,機(jī)器人避障的出路在哪里?
發(fā)布時(shí)間:2016-11-25 責(zé)任編輯:wenwei
【導(dǎo)讀】避障是指移動(dòng)機(jī)器人在行走過程中,通過傳感器感知到在其規(guī)劃路線上存在靜態(tài)或動(dòng)態(tài)障礙物時(shí),按照 一定的算法實(shí)時(shí)更新路徑,繞過障礙物,最后達(dá)到目標(biāo)點(diǎn)。從原理上來講,沒有哪個(gè)傳感器是完美的,比方說機(jī)器人面前是一塊完全透明的玻璃,那么采用紅外、激光雷達(dá)或視覺的方案,就可能因?yàn)檫@個(gè)光線直接穿過玻璃導(dǎo)致檢測(cè)失敗……
避障常用哪些傳感器
不管是要進(jìn)行導(dǎo)航規(guī)劃還是避障,感知周邊環(huán)境信息是第一步。就避障來說,移動(dòng)機(jī)器人需要通過傳感器 實(shí)時(shí)獲取自身周圍障礙物信息,包括尺寸、形狀和位置等信息。避障使用的傳感器多種多樣,各有不同的原理和特點(diǎn),目前常見的主要有視覺傳感器、激光傳感器、紅外傳感器、超聲波傳感器等。下面我簡(jiǎn)單介紹一下這幾種傳感器的基本工作原理。
超聲波
超聲波傳感器的基本原理是測(cè)量超聲波的飛行時(shí)間,通過d=vt/2測(cè)量距離,其中d是距離,v是聲速,t是 飛行時(shí)間。由于超聲波在空氣中的速度與溫濕度有關(guān),在比較精確的測(cè)量中,需把溫濕度的變化和其它因素考慮進(jìn)去。
上面這個(gè)圖就是超聲波傳感器信號(hào)的一個(gè)示意。通過壓電或靜電變送器產(chǎn)生一個(gè)頻率在幾十kHz的超聲波脈沖組成波包,系統(tǒng)檢測(cè)高于某閾值的反向聲波,檢測(cè)到后使用測(cè)量到的飛行時(shí)間計(jì)算距離。超聲波傳感器一般作用距離較短,普通的有效探測(cè)距離都在幾米,但是會(huì)有一個(gè)幾十毫米左右的最小探測(cè)盲區(qū)。由于超聲傳感器的成本低、實(shí)現(xiàn)方法簡(jiǎn)單、技術(shù)成熟,是移動(dòng)機(jī)器人中常用的傳感器。超聲波傳感器也有一些缺點(diǎn),首先看下面這個(gè)圖。
因?yàn)槁曇羰清F形傳播的,所以我們實(shí)際測(cè)到的距離并不是 一個(gè)點(diǎn),而是某個(gè)錐形角度范圍內(nèi)最近物體的距離。
另外,超聲波的測(cè)量周期較長(zhǎng),比如3米左右的物體,聲波傳輸這么遠(yuǎn)的距離需要約20ms的時(shí)間。再者,不同材料對(duì)聲波的反射或者吸引是不相同的,還有多個(gè)超聲傳感器之間有可能會(huì)互相干擾,這都是實(shí)際應(yīng)用的過程中需要考慮的。
紅外
一般的紅外測(cè)距都是采用三角測(cè)距的原理。紅外發(fā)射器按照一定角度發(fā)射紅外光束,遇到物體之后,光會(huì)反向回來,檢測(cè)到反射光之后,通過結(jié)構(gòu)上的幾何三角關(guān)系,就可以計(jì)算出物體距離D。
當(dāng)D的距離足夠近的時(shí)候,上圖中L值會(huì)相當(dāng)大,如果超過CCD的探測(cè)范圍,這時(shí),雖然物體很近,但是傳感器反而看不到了。當(dāng)物體距離D很大時(shí),L值就會(huì)很小,測(cè)量量精度會(huì)變差。因此,常見的紅外傳感器 測(cè)量距離都比較近,小于超聲波,同時(shí)遠(yuǎn)距離測(cè)量也有最小距離的限制。另外,對(duì)于透明的或者近似黑體的物體,紅外傳感器是無法檢測(cè)距離的。但相對(duì)于超聲來說,紅外傳感器具有更高的帶寬。
激光
常見的激光雷達(dá)是基于飛行時(shí)間的(ToF,time of flight),通過測(cè)量激光的飛行時(shí)間來進(jìn)行測(cè)距d=ct/2,類似于前面提到的超聲測(cè)距公式,其中d是距離,c是光速,t是從發(fā)射到接收的時(shí)間間隔。激光雷達(dá)包括發(fā)射器和接收器 ,發(fā)射器用激光照射目標(biāo),接收器接收反向回的光波。機(jī)械式的激光雷達(dá)包括一個(gè)帶有鏡子的機(jī)械機(jī)構(gòu),鏡子的旋轉(zhuǎn)使得光束可以覆蓋 一個(gè)平面,這樣我們就可以測(cè)量到一個(gè)平面上的距離信息。
對(duì)飛行時(shí)間的測(cè)量也有不同的方法,比如使用脈沖激光,然后類似前面講的超聲方案,直接測(cè)量占用的時(shí)間,但因?yàn)楣馑龠h(yuǎn)高于聲速,需要非常高精度的時(shí)間測(cè)量元件,所以非常昂貴;另一種發(fā)射調(diào)頻后的連續(xù)激光波,通過測(cè)量接收到的反射波之間的差頻來測(cè)量時(shí)間。
圖一
圖二
比較簡(jiǎn)單的方案是測(cè)量反射光的相移,傳感器以已知的頻率發(fā)射一定幅度的調(diào)制光,并測(cè)量發(fā)射和反向信號(hào)之間的相移,如上圖一。調(diào)制信號(hào)的波長(zhǎng)為lamda=c/f,其中c是光速,f是調(diào)制頻率,測(cè)量到發(fā)射和反射光束之間的相移差theta之后,距離可由lamda*theta/4pi計(jì)算得到,如上圖二。
激光雷達(dá)的測(cè)量距離可以達(dá)到幾十米甚至上百米,角度分辨率高,通??梢赃_(dá)到零點(diǎn)幾度,測(cè)距的精度也高。但測(cè)量距離的置信度會(huì)反比于接收信號(hào)幅度的平方,因此,黑體或者遠(yuǎn)距離的物體距離測(cè)量不會(huì)像光亮的、近距離的物體那么好的估計(jì)。并且,對(duì)于透明材料,比如玻璃,激光雷達(dá)就無能為力了。還有,由于結(jié)構(gòu)的復(fù)雜、器件成本高,激光雷達(dá)的成本也很高。
一些低端的激光雷達(dá)會(huì)采用三角測(cè)距的方案進(jìn)行測(cè)距。但這時(shí)它們的量程會(huì)受到限制,一般幾米以內(nèi),并且精度相對(duì)低一些,但用于室內(nèi)低速環(huán)境的SLAM或者在室外環(huán)境只用于避障的話,效果還是不錯(cuò)的。
視覺
常用的計(jì)算機(jī)視覺方案也有很多種, 比如雙目視覺,基于TOF的深度相機(jī),基于結(jié)構(gòu)光的深度相機(jī)等。深度相機(jī)可以同時(shí)獲得RGB圖和深度圖,不管是基于TOF還是結(jié)構(gòu)光,在室外強(qiáng)光環(huán)境下效果都并不太理想,因?yàn)樗鼈兌际切枰鲃?dòng)發(fā)光的。像基于結(jié)構(gòu)光的深度相機(jī),發(fā)射出的光會(huì)生成相對(duì)隨機(jī)但又固定的斑點(diǎn)圖樣,這些光斑打在物體上后,因?yàn)榕c攝像頭距離不同,被攝像頭捕捉到的位置也不相同,之后先計(jì)算拍到的圖的斑點(diǎn)與標(biāo)定的標(biāo)準(zhǔn)圖案在不同位置的偏移,利用攝像頭位置、傳感器大小等參數(shù)就可以計(jì)算出物體與攝像頭的距離。而我們目前的E巡機(jī)器人主要是工作在室外環(huán)境,主動(dòng)光源會(huì)受到太陽光等條件的很大影響,所以雙目視覺這種被動(dòng)視覺方案更適合,因此我們采用的視覺方案是基于雙目視覺的。
雙目視覺的測(cè)距本質(zhì)上也是三角測(cè)距法,由于兩個(gè)攝像頭的位置不同,就像我們?nèi)说膬芍谎劬σ粯?,看到的物體不一樣。兩個(gè)攝像頭看到的同一個(gè)點(diǎn)P,在成像的時(shí)候會(huì)有不同的像素位置,此時(shí)通過三角測(cè)距就可以測(cè)出這個(gè)點(diǎn)的距離。與結(jié)構(gòu)光方法不同的是,結(jié)構(gòu)光計(jì)算的點(diǎn)是主動(dòng)發(fā)出的、已知確定的,而雙目算法計(jì)算的點(diǎn)一般是利用算法抓取到的圖像特征,如SIFT或SURF特征等,這樣通過特征計(jì)算出來的是稀疏圖。
要做良好的避障,稀疏圖還是不太夠的,我們需要獲得的是稠密的點(diǎn)云圖,整個(gè)場(chǎng)景的深度信息。稠密匹配的算法大致可以分為兩類,局部算法和全局算法。局部算法使用像素局部的信息來計(jì)算其深度,而全局算法采用圖像中的所有信息進(jìn)行計(jì)算。一般來說,局部算法的速度更快,但全局算法的精度更高。
這兩類各有很多種不同方式的具體算法實(shí)現(xiàn)。能過它們的輸出我們可以估算出整個(gè)場(chǎng)景中的深度信息,這個(gè)深度信息可以幫助我們尋找地圖場(chǎng)景中的可行走區(qū)域以及障礙物。整個(gè)的輸出類似于激光雷達(dá)輸出的3D點(diǎn)云圖,但是相比來講得到信息會(huì)更豐富,視覺同激光相比優(yōu)點(diǎn)是價(jià)格低很多,缺點(diǎn)也比較明顯,測(cè)量精度要差 一些,對(duì)計(jì)算能力的要求也高很多。當(dāng)然,這個(gè)精度差是相對(duì)的,在實(shí)用的過程中是完全足夠的,并且我們目前的算法在我們的平臺(tái)NVIDIA TK1和TX1上是可以做到實(shí)時(shí)運(yùn)行。
KITTI采集的圖
實(shí)際輸出的深度圖,不同的顏色代表不同的距離
在實(shí)際應(yīng)用的過程中,我們從攝像頭讀取到的是連續(xù)的視頻幀流,我們還可以通過這些幀來估計(jì)場(chǎng)景中 目標(biāo)物體的運(yùn)動(dòng),給它們建立運(yùn)動(dòng)模型,估計(jì)和預(yù)測(cè)它們的運(yùn)動(dòng)方向、運(yùn)動(dòng)速度,這對(duì)我們實(shí)際行走、避障規(guī)劃是很有用的。
以上幾種是最常見的幾種傳感器 ,各有其優(yōu)點(diǎn)和缺點(diǎn),在真正實(shí)際應(yīng)用的過程中,一般是綜合配置使用多種不同的傳感器 ,以最大化保證在各種不同的應(yīng)用和環(huán)境條件下,機(jī)器人都能正確感知到障礙物信息。我們公司的E巡機(jī)器人的避障方案就是以雙目視覺為主,再輔助以多種其他傳感器,保證機(jī)器人周邊360度空間立體范圍內(nèi)的障礙物都能被有效偵測(cè)到,保證機(jī)器人行走的安全性。
避障常用算法原理
在講避障算法之前,我們假定機(jī)器人已經(jīng)有了一個(gè)導(dǎo)航規(guī)劃算法對(duì)自己的運(yùn)動(dòng)進(jìn)行規(guī)劃,并按照規(guī)劃的路徑行走。避障算法的任務(wù)就是在機(jī)器人執(zhí)行正常行走任務(wù)的時(shí)候,由于傳感器的輸入感知到了障礙物的存在,實(shí)時(shí)地更新目標(biāo)軌跡,繞過障礙物。
Bug算法知乎用戶無方表示
Bug算法應(yīng)該是最簡(jiǎn)單的一種避障算法了,它的基本思想是在發(fā)現(xiàn)障礙后,圍著檢測(cè)到的障礙物輪廓行走,從而繞開它。Bug算法目前有很多變種, 比如Bug1算法,機(jī)器人首先完全地圍繞物體,然后從距目標(biāo)最短距離的點(diǎn)離開。Bug1算法的效率很低,但可以保證機(jī)器人達(dá)到目標(biāo)。
Bug1算法示例
改進(jìn)后的Bug2算法中,機(jī)器人開始時(shí)會(huì)跟蹤物體的輪廓,但不會(huì)完全圍繞物體一圈,當(dāng)機(jī)器人可以直接移動(dòng)至目標(biāo)時(shí),就可以直接從障礙分離,這樣可以達(dá)到比較短的機(jī)器人行走總路徑。
Bug2算法示例
除此之外,Bug算法還有很多其他的變種, 比如正切Bug算法等等。在許多簡(jiǎn)單的場(chǎng)景中,Bug算法是實(shí)現(xiàn)起來比較容易和方便的,但是它們并沒有考慮到機(jī)器人的動(dòng)力學(xué)等限制,因此在更復(fù)雜的實(shí)際環(huán)境中就不是那么可靠好用了。
勢(shì)場(chǎng)法(PFM)
實(shí)際上,勢(shì)場(chǎng)法不僅僅可以用來避障,還可以用來進(jìn)行路徑的規(guī)劃。勢(shì)場(chǎng)法把機(jī)器人處理在勢(shì)場(chǎng)下的 一個(gè)點(diǎn),隨著勢(shì)場(chǎng)而移動(dòng),目標(biāo)表現(xiàn)為低谷值,即對(duì)機(jī)器人的吸引力,而障礙物扮演的勢(shì)場(chǎng)中的一個(gè)高峰,即斥力,所有這些力迭加于機(jī)器人身上,平滑地引導(dǎo)機(jī)器人走向目標(biāo),同時(shí)避免碰撞已知的障礙物。當(dāng)機(jī)器人移動(dòng)過程中檢測(cè)新的障礙物,則需要更新勢(shì)場(chǎng)并重新規(guī)劃。
上面這個(gè)圖是勢(shì)場(chǎng)比較典型的示例圖,最上的圖a左上角是出發(fā)點(diǎn),右下角是目標(biāo)點(diǎn),中間三個(gè)方塊是障礙物。中間的圖b就是等勢(shì)位圖,圖中的每條連續(xù)的線就代表了一個(gè)等勢(shì)位的一條線,然后虛線表示的在整個(gè)勢(shì)場(chǎng)里面所規(guī)劃出來的一條路徑,我們的機(jī)器人是沿著勢(shì)場(chǎng)所指向的那個(gè)方向一直行走,可以看見它會(huì)繞過這個(gè)比較高的障礙物。最下面的圖,即我們整個(gè)目標(biāo)的吸引力還有我們所有障礙物產(chǎn)生的斥力最終形成的一個(gè)勢(shì)場(chǎng)效果圖,可以看到機(jī)器人從左上角的出發(fā)點(diǎn)出發(fā),一路沿著勢(shì)場(chǎng)下降的方向達(dá)到最終的目標(biāo)點(diǎn),而每個(gè)障礙物勢(shì)場(chǎng)表現(xiàn)出在很高的平臺(tái),所以,它規(guī)劃出來的路徑是不會(huì)從這個(gè)障礙物上面走的。
一種擴(kuò)展的方法在基本的勢(shì)場(chǎng)上附加了了另外兩個(gè)勢(shì)場(chǎng):轉(zhuǎn)運(yùn)勢(shì)場(chǎng)和任務(wù)勢(shì)場(chǎng)。它們額外考慮了由于機(jī)器人本身運(yùn)動(dòng)方向、運(yùn)動(dòng)速度等狀態(tài)和障礙物之間的相互影響。
轉(zhuǎn)動(dòng)勢(shì)場(chǎng)考慮了障礙與機(jī)器人的相對(duì)方位,當(dāng)機(jī)器人朝著障礙物行走時(shí),增加斥力, 而當(dāng)平行于物體行走時(shí),因?yàn)楹苊黠@并不會(huì)撞到障礙物,則減小斥力。任務(wù)勢(shì)場(chǎng)則排除了那些根據(jù)當(dāng)前機(jī)器人速度不會(huì)對(duì)近期勢(shì)能造成影響的障礙,因此允許規(guī)劃出 一條更為平滑的軌跡。
另外還有諧波勢(shì)場(chǎng)法等其他改進(jìn)方法。勢(shì)場(chǎng)法在理論上有諸多局限性, 比如局部最小點(diǎn)問題,或者震蕩性的問題,但實(shí)際應(yīng)用過程中效果還是不錯(cuò)的,實(shí)現(xiàn)起來也比較容易。
向量場(chǎng)直方圖(VFH)
它執(zhí)行過程中針對(duì)移動(dòng)機(jī)器人當(dāng)前周邊環(huán)境創(chuàng)建了一個(gè)基于極坐標(biāo)表示的局部地圖,這個(gè)局部使用柵格圖的表示方法,會(huì)被最近的一些傳感器數(shù)據(jù)所更新。VFH算法產(chǎn)生的極坐標(biāo)直方圖如圖所示:
圖中x軸是以機(jī)器人為中心感知到的障礙物的角度,y軸表示在該方向存在障礙物的概率大小p。實(shí)際應(yīng)用的過程中會(huì)根據(jù)這個(gè)直方圖首先辨識(shí)出允許機(jī)器人通過的足夠大的所有空隙,然后對(duì)所有這些空隙計(jì)算其代價(jià)函數(shù),最終選擇具有最低代價(jià)函數(shù)的通路通過。
代價(jià)函數(shù)受三個(gè)因素影響: 目標(biāo)方向、機(jī)器人當(dāng)前方向、之前選擇的方向,最終生成的代價(jià)是這三個(gè)因素的加權(quán)值,通過調(diào)節(jié)不同的權(quán)重可以調(diào)整機(jī)器人的選擇偏好。VFH算法也有其他的擴(kuò)展和改進(jìn),比如在VFH+算法中,就考慮了機(jī)器人運(yùn)動(dòng)學(xué)的限制。由于實(shí)際底層運(yùn)動(dòng)結(jié)構(gòu)的不同,機(jī)器的實(shí)際運(yùn)動(dòng)能力是受限的,比如汽車結(jié)構(gòu),就不能隨心所欲地原地轉(zhuǎn)向等。VFH+算法會(huì)考慮障礙物對(duì)機(jī)器人實(shí)際運(yùn)動(dòng)能力下軌跡的阻擋效應(yīng),屏蔽掉那些雖然沒有被障礙物占據(jù)但由于其阻擋實(shí)際無法達(dá)到的運(yùn)動(dòng)軌跡。我們的E巡機(jī)器人采用的是兩輪差動(dòng)驅(qū)動(dòng)的運(yùn)動(dòng)形式,運(yùn)動(dòng)非常靈活,實(shí)際應(yīng)用較少受到這些因素的影響。
具體可以看 一下這個(gè)圖示:
類似這樣傳統(tǒng)的避障方法還有很多,除此之外,還有許多其他的智能避障技術(shù),比如神經(jīng)網(wǎng)絡(luò)、模糊邏輯等。
神經(jīng)網(wǎng)絡(luò)方法對(duì)機(jī)器人從初始位置到目標(biāo)位置的整個(gè)行走路徑進(jìn)行訓(xùn)練建模,應(yīng)用的時(shí)候,神經(jīng)網(wǎng)絡(luò)的輸 入為之前機(jī)器人的位姿和速度以及傳感器的輸 入,輸出期望的下一目標(biāo)或運(yùn)動(dòng)方向。
模糊邏輯方法核心是模糊控制器,需要將專家的知識(shí)或操作人員的經(jīng)驗(yàn)寫成多條模糊邏輯語句,以此控制機(jī)器人的避障過程。 比如這樣的模糊邏輯:第一條,若右前方較遠(yuǎn)處檢測(cè)到障礙物,則稍向左轉(zhuǎn);第 二條,若右前方較近處檢測(cè)到障礙物,則減速并向左轉(zhuǎn)更多角度;等等。
避障過程中存在哪些問題
傳感器失效
從原理上來講,沒有哪個(gè)傳感器是完美的,比方說機(jī)器人面前是一塊完全透明的玻璃,那么采用紅外、激光雷達(dá)或視覺的方案,就可能因?yàn)檫@個(gè)光線直接穿過玻璃導(dǎo)致檢測(cè)失敗,這時(shí)候就需要超聲波這樣的傳感器來進(jìn)行障礙物的偵測(cè)。所以我們?cè)谡嬲龖?yīng)用的過程中,肯定都需要采取多種傳感器的結(jié)合,對(duì)不同傳感器采集到的數(shù)據(jù)進(jìn)行一個(gè)交叉驗(yàn)證,以及信息的融合,保證機(jī)器人能夠穩(wěn)定可靠的工作。
除此之外也有其他模式可能導(dǎo)致傳感器失效,比如超聲波測(cè)距,一般需要超聲陣列,而陣列之間的傳感器如果同時(shí)工作的話,會(huì)容易互相產(chǎn)生干擾,傳感器A發(fā)射的光波反射回來被傳感器B接收,導(dǎo)致測(cè)量結(jié)果出現(xiàn)錯(cuò)誤,但是如果按照順序一個(gè)個(gè)工作,由于超聲波傳感器采樣的周期相對(duì)比較長(zhǎng),會(huì)減慢整個(gè)采集的速度,對(duì)實(shí)時(shí)避障造成影響,這就要求從硬件的結(jié)構(gòu)到算法都必須設(shè)計(jì)好,盡可能提高采樣速度,減少傳感器之間的串?dāng)_。
還有比如說,機(jī)器人如果需要運(yùn)動(dòng)的話,一般都需要電機(jī)和驅(qū)動(dòng)器,它們?cè)诠ぷ鬟^程中都會(huì)產(chǎn)生電容兼容性的問題,有可能會(huì)導(dǎo)致傳感器采集出現(xiàn)錯(cuò)誤,尤其是模擬的傳感器,所以在實(shí)現(xiàn)過程中要把電機(jī)驅(qū)動(dòng)器等設(shè)備、傳感器的采集部分,以及電源通信部分保持隔離,保證整個(gè)系統(tǒng)是能夠正常工作的。
算法設(shè)計(jì)
在剛剛提到的幾個(gè)算法,很多在設(shè)計(jì)的時(shí)候都并沒有完善考慮到整個(gè)移動(dòng)機(jī)器人本身運(yùn)動(dòng)學(xué)模型和動(dòng)力學(xué)模型,這樣的算法規(guī)劃出來的軌跡有可能在運(yùn)動(dòng)學(xué)上是實(shí)現(xiàn)不了的,有可能在運(yùn)動(dòng)學(xué)上可以實(shí)現(xiàn),但是控制起來非常困難,比如剛剛提到的如果一臺(tái)機(jī)器人的底盤是汽車的結(jié)構(gòu),就不能隨心所欲地原地轉(zhuǎn)向,或者哪怕這個(gè)機(jī)器人是可以原地轉(zhuǎn)向,但是如果一下子做一個(gè)很大的機(jī)動(dòng)的話,我們的整個(gè)電機(jī)是執(zhí)行不出來的。所以在設(shè)計(jì)的時(shí)候,就要優(yōu)化好機(jī)器人本身的結(jié)構(gòu)和控制,設(shè)計(jì)避障方案的時(shí)候,也要考慮到可行性的問題。
然后在整個(gè)算法的架構(gòu)設(shè)計(jì)的時(shí)候,我們要考慮到為了避讓或者是避免傷人或者傷了機(jī)器人本身,在執(zhí)行工作的時(shí)候,避障是優(yōu)先級(jí)比較高的任務(wù),甚至是最高的任務(wù),并且自身運(yùn)行的優(yōu)先級(jí)最高,對(duì)機(jī)器人的控制優(yōu)先級(jí)也要最高,同時(shí)這個(gè)算法實(shí)現(xiàn)起來速度要足夠快,這樣才能滿足我們實(shí)時(shí)性的要求。
總之,在我看來,避障在某種程度上可以看做機(jī)器人在自主導(dǎo)航規(guī)劃的一種特殊情況,相比整體全局的導(dǎo)航,它對(duì)實(shí)時(shí)性和可靠性的要求更高一些,然后,局部性和動(dòng)態(tài)性是它的一個(gè)特點(diǎn),這是我們?cè)谠O(shè)計(jì)整個(gè)機(jī)器人硬件軟件架構(gòu)時(shí)一定要注意的。
讀者提問:
多機(jī)協(xié)同的避障策略有哪些?
多機(jī)協(xié)同避障策略在整個(gè)SLAM方向上都還是一個(gè)在鉆研的熱點(diǎn)領(lǐng)域,單純就避障來說,目前的方案是,當(dāng)有兩個(gè)或多個(gè)機(jī)器人協(xié)同工作的時(shí)候,每個(gè)機(jī)器人會(huì)在一個(gè)局部各自維護(hù)一個(gè)相對(duì)的動(dòng)態(tài)地圖,所有機(jī)器人共享一個(gè)相對(duì)靜態(tài)的地圖,而對(duì)于單個(gè)機(jī)器人來說,它們會(huì)各自維護(hù)一個(gè)更加動(dòng)態(tài)的地圖,這樣當(dāng)兩個(gè)機(jī)器人接近一個(gè)位置時(shí),它們會(huì)將它們維護(hù)的動(dòng)態(tài)地圖合并起來。
這樣子有什么好處呢,比如視覺只能看到前方一個(gè)方向,這時(shí)候跟后面機(jī)器人的動(dòng)態(tài)地圖合并之后,就能看到前后整個(gè)局部的動(dòng)態(tài)信息,然后完成避障。
多機(jī)協(xié)同的關(guān)鍵在于,兩個(gè)局部地圖之間的分享,就是它們分別在整個(gè)相對(duì)靜態(tài)的全局地圖上是有一小塊一個(gè)窗口的位置,到這兩個(gè)窗口可能融合的話,會(huì)把它們?nèi)诤显谝黄穑瑫r(shí)去指導(dǎo)兩個(gè)機(jī)器人的避障。在具體實(shí)現(xiàn)過程中,也要考慮整個(gè)信息傳輸?shù)膯栴},如果是自己本身的局部地圖,由于都是本機(jī)的運(yùn)算,速度一般都比較快,如果是兩個(gè)機(jī)器人協(xié)作的話,就要考慮到傳輸?shù)难訒r(shí),以及帶寬的問題。
避障有無標(biāo)準(zhǔn)的測(cè)試標(biāo)準(zhǔn)和指標(biāo)?
目前就我所了解業(yè)界并沒有什么統(tǒng)一的測(cè)試標(biāo)準(zhǔn)和指標(biāo),我們目前測(cè)試的時(shí)候會(huì)考慮這些指標(biāo),比如在單個(gè)障礙物或是多個(gè)障礙物,障礙物是靜態(tài)的或動(dòng)態(tài)的情況下避障效果如何,以及實(shí)際規(guī)劃出的路徑完美度如何,還有這個(gè)軌跡是否平滑,符合我們觀感的效果。
當(dāng)然,這個(gè)最重要的指標(biāo)我覺得應(yīng)該避障是否失敗就是成功率的問題,要保證這個(gè)避障不管是碰到靜態(tài)的或者是動(dòng)態(tài)的物體,然后那個(gè)物體不管是什么材質(zhì),比如說如果是動(dòng)態(tài)的人,我們穿什么樣的衣服會(huì)不會(huì)對(duì)整個(gè)避障功能造成影響,另外就是不同的環(huán)境又會(huì)有什么樣的影響,比如光線充足或暗淡。對(duì)于避障來說,成功率才是最為關(guān)鍵的。
【本文內(nèi)容由大道智創(chuàng)CTO邢志偉在硬創(chuàng)公開課分享,新智造整理】
推薦閱讀:
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動(dòng)化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計(jì)簡(jiǎn)介
- 如何通過基本描述找到需要的電容?
技術(shù)文章更多>>
- 瑞典名企Roxtec助力構(gòu)建安全防線
- 貿(mào)澤與Cinch聯(lián)手發(fā)布全新電子書深入探討惡劣環(huán)境中的連接應(yīng)用
- 第二十二屆中國(guó)國(guó)際軟件合作洽談會(huì)在成都順利舉行
- 混合信號(hào)示波器的原理和應(yīng)用
- 功率器件熱設(shè)計(jì)基礎(chǔ)(十)——功率半導(dǎo)體器件的結(jié)構(gòu)函數(shù)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達(dá)控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢(mèng)想電子
模擬鎖相環(huán)
耐壓測(cè)試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池