推薦閱讀:
生動有趣的無人機(jī)模塊解剖,你敢一試嗎?
發(fā)布時間:2016-03-01 責(zé)任編輯:wenwei
【導(dǎo)讀】無人機(jī)在2015年已經(jīng)迅速地成為現(xiàn)象級的熱門產(chǎn)品,甚至我們之前都沒有來得及細(xì)細(xì)研究它。與固定翼無人機(jī)相比,多軸飛行器的飛行更加穩(wěn)定,能在空中懸停。感興趣的話就跟著小編一起來研究一下無人機(jī)主機(jī)硬件和標(biāo)準(zhǔn)遙控器的結(jié)構(gòu)圖吧!
如今無人機(jī)成為了展會最大的熱點之一,大疆(DJI)、Parrot、3D Robotics、AirDog等知名無人機(jī)公司都有展示他們的最新產(chǎn)品。甚至是英特爾、高通的展位上展出了通信功能強(qiáng)大、能夠自動避開障礙物的飛行器。無人機(jī)在2015年已經(jīng)迅速地成為現(xiàn)象級的熱門產(chǎn)品,甚至我們之前都沒有來得及細(xì)細(xì)研究它。與固定翼無人機(jī)相比,多軸飛行器的飛行更加穩(wěn)定,能在空中懸停。主機(jī)硬件結(jié)構(gòu)及標(biāo)準(zhǔn)遙控器的結(jié)構(gòu)如下圖。
四軸飛行器系統(tǒng)解析圖
遙控器系統(tǒng)解析圖
以上只是標(biāo)準(zhǔn)產(chǎn)品的解剖圖,有些更加高級的如針對航模發(fā)燒友和航拍用戶們的無人機(jī)系統(tǒng),還會要求有云臺、攝像頭、視頻傳輸系統(tǒng)以及視頻接收等更多模塊。
飛控的大腦:微控制器
在四軸飛行器的飛控主板上,需要用到的芯片并不多。目前的玩具級飛行器還只是簡單地在空中飛行或停留,只要能夠接收到遙控器發(fā)送過來的指令,控制四個馬達(dá)帶動槳翼,基本上就可以實現(xiàn)飛行或懸停的功能。意法半導(dǎo)體高級市場工程師介紹,無人機(jī)/多軸飛行器主要部件包括飛行控制以及遙控器兩部分。其中飛行控制包括電調(diào)/馬達(dá)控制、飛機(jī)姿態(tài)控制以及云臺控制等。目前主流的電調(diào)控制方式主要分成BLDC方波控制以及FOC正弦波控制。
新唐的MCU負(fù)責(zé)人表示: 多軸飛行器由遙控, 飛控,動力系統(tǒng), 航拍等不同模塊構(gòu)成, 根據(jù)不同等級產(chǎn)品的需求,會采用到不同CPU內(nèi)核。例如小四軸的飛行主控, 因功能單純, 體積小, 必須同時整合遙控接收, 飛行控制及動力驅(qū)動功能;中高階多軸飛行器則采用內(nèi)建 DSP 及浮點運算單元的, 負(fù)責(zé)飛行主控功能,驅(qū)動無刷電機(jī)的電調(diào)(ESC)板則采用MINI5($1.0889)系列設(shè)計。低階遙控器使用 SOP20 封裝的4T 8051 N79E814;中高階遙控器則采用Cortex-M0 M051系列。另外, 內(nèi)建ARM9及H.264視頻邊譯碼器的N329系列SOC則應(yīng)用于2.4G及5.8G的航拍系統(tǒng)。
在飛控主板上,目前控制和處理用得最多的還是MCU而不是CPU。由于對于飛行控制方面主要都是浮點運算,簡單的ARM Cortex-M4內(nèi)核32位MCU都可以很好的滿足。有的傳感器MEMS芯片中已經(jīng)集成了DSP,與之搭配的話,更加簡單的8位單片機(jī)也可以做到。
高通和英特爾推的飛控主芯片
CES上我們看到了高通和英特爾展示了功能更為豐富的多軸飛行器,他們采用了比微控制器(MCU)更為強(qiáng)大的CPU或是ARM Cortex-A系列處理器作為飛控主芯片。例如,高通CES上展示的Snapdragon Cargo無人機(jī)是基于高通Snapdragon芯片開發(fā)出來的飛行控制器,它有無線通信、傳感器集成和空間定位等功能。Intel CEO Brian Krzanich也親自在CES上演示了他們的無人機(jī)。這款無人機(jī)采用了“RealSense”技術(shù),能夠建起3D地圖和感知周圍環(huán)境,它可以像一只蝙蝠一樣飛行,能主動避免障礙物。英特爾的無人機(jī)是與一家德國工業(yè)無人機(jī)廠商Ascending Technologies合作開發(fā),內(nèi)置了高達(dá)6個英特爾的“RealSense”3D攝像頭,以及采用了四核的英特爾凌動(Atom)處理器的PCI-express定制卡,來處理距離遠(yuǎn)近與傳感器的實時信息,以及如何避免近距離的障礙物。這兩家公司在CES展示如此強(qiáng)大功能的無人機(jī),一是看好無人機(jī)的市場,二是美國即將推出相關(guān)法規(guī),對無人機(jī)的飛行將有嚴(yán)格的管控。
此外,活躍在在機(jī)器人市場的歐洲處理器廠商XMOS也表示已經(jīng)進(jìn)入到無人機(jī)領(lǐng)域。XMOS公司市場營銷和業(yè)務(wù)拓展副總裁Paul Neil博士表示,XMOS的xCORE多核微控制器系列已被一些無人機(jī)/多軸飛行器的OEM客戶采用。在這些系統(tǒng)中,XMOS多核微控制器既用于飛行控制也用于MCU內(nèi)部通信。
Paul Neil說:xCORE多核微控制器擁有數(shù)量在8到32個之間的、頻率高達(dá)500MHz 的32位RISC內(nèi)核。xCORE器件也帶有Hardware Response I/O接口,它們可提供卓越的硬件實時I/O性能,同時伴隨很低的延遲。“這種多核解決方案支持完全獨立地執(zhí)行系統(tǒng)控制與通信任務(wù),不產(chǎn)生任何實時操作系統(tǒng)(RTOS)開銷。xCORE微控制器的硬件實時性能使得我們的客戶能夠?qū)崿F(xiàn)非常精確的控制算法,同時在系統(tǒng)內(nèi)無抖動。xCORE多核微控制器的這些優(yōu)點,正是吸引諸如無人機(jī)/多軸飛行器這樣的高可靠性、高實時性應(yīng)用用戶的關(guān)鍵之處。”
多軸飛行器需要用到四至六顆無刷電機(jī)(馬達(dá)),用來驅(qū)動無人機(jī)的旋翼。而馬達(dá)驅(qū)動控制器就是用來控制無人機(jī)的速度與方向。原則上一顆馬達(dá)需要配置一顆8位MCU來做控制,但也有一顆MCU控制多個BLDC馬達(dá)的方案。
多軸無人機(jī)的EMS/傳感器
某無人機(jī)方案商總經(jīng)理認(rèn)為,目前業(yè)內(nèi)的玩具級飛行器,雖然大部分從三軸升級到了六軸MEMS,但通常采用的都是消費類產(chǎn)品如平板或手機(jī)上較常用的價格敏感型型號。在專業(yè)航拍以及專為航模發(fā)燒友開發(fā)的中高端無人機(jī)上,則會用到質(zhì)量更為價格更高的傳感器,以保障無人機(jī)更為穩(wěn)定、安全的飛行。
這些MEMS傳感器主要用來實現(xiàn)飛行器的平穩(wěn)控制和輔助導(dǎo)航。飛行器之所以能懸停,可以做航拍,是因為MEMS傳感器可以檢測飛行器在飛行過程中的俯仰角和滾轉(zhuǎn)角變化,在檢測到角度變化后,就可以控制電機(jī)向相反的方向轉(zhuǎn)動,進(jìn)而達(dá)到穩(wěn)定的效果。這是一個典型的閉環(huán)控制系統(tǒng)。
至于用MEMS傳感器測量角度變化,一般要選擇組合傳感器,既不能單純依賴加速度計,也不能單純依賴陀螺儀,這是因為每種傳感器都有一定的局限性。比如說陀螺儀輸出的是角速度,要通過積分才能獲得角度,但是即使在零輸入狀態(tài)時,陀螺依然是有輸出的,它的輸出是白噪聲和慢變隨機(jī)函數(shù)的疊加,受此影響,在積分的過程中,必然會引進(jìn)累計誤差,積分時間越長,誤差就越大。這就需要加速度計來校正陀螺儀,因為加速度計可以利用力的分解原理,通過重力加速度在不同軸向上的分量來判斷傾角。由于沒有積分誤差,所以加速度計在相對靜止的條件下可以校正陀螺儀的誤差。但在運動狀態(tài)下,加速度計輸出的可信度就要下降,因為它測量的是重力和外力的合力。較常見的算法就是利用互補(bǔ)濾波,結(jié)合加速度計和陀螺儀的輸出來算出角度變化。
ADI亞太區(qū)微機(jī)電產(chǎn)品市場和應(yīng)用經(jīng)理表示,ADI產(chǎn)品主要的優(yōu)勢就是在各種惡劣條件下,均可獲得高精度的輸出。以陀螺儀為例,它的理想輸出是只響應(yīng)角速度變化,但實際上受設(shè)計和工藝的限制,陀螺對加速度也是敏感的,就是我們在陀螺儀數(shù)據(jù)手冊上常見的deg/sec/g的指標(biāo)。對于多軸飛行器的應(yīng)用來說,這個指標(biāo)尤為重要,因為飛行器中的馬達(dá)一般會帶來較強(qiáng)烈的振動,一旦減震控制不好,就會在飛行過程中產(chǎn)生很大的加速度,那勢必會帶來陀螺輸出的變化,進(jìn)而引起角度變化,馬達(dá)就會誤動作,最后給終端用戶的直觀感覺就是飛行器并不平穩(wěn)。
除此之外,在某些情況下,如果飛行器突然轉(zhuǎn)彎,可能會造成輸入轉(zhuǎn)速超過陀螺儀的測試量程,理想情況下,陀螺儀的輸出應(yīng)該是飽和輸出,待轉(zhuǎn)速恢復(fù)到陀螺儀量程范圍后,陀螺儀再正確反應(yīng)實時的角速度變化,但有些陀螺儀確不是這樣,一旦輸入超過量程,陀螺便會產(chǎn)生震蕩輸出,給出完全錯誤的角速度。還有某些情況下,飛行器會受到較大的加速度沖擊,理想情況陀螺儀要盡量抑制這種沖擊,ADI的陀螺儀在設(shè)計的時候,也充分考慮到這種情況,利用雙核和四核的機(jī)械結(jié)構(gòu),采用差分輸出的原理來抑制這種“共模”的沖擊,準(zhǔn)確測量“差模”的角速度變化。但某些陀螺儀在這種情況下會產(chǎn)生非常大錯誤輸出,甚至是產(chǎn)生震蕩輸出。
“對于飛行器來說,最重要的一點就是安全,無論它的硬件設(shè)計還是軟件設(shè)計,都要首先保證安全,而后才是極致的用戶體驗。”
“未來飛行器上的MEMS產(chǎn)品也會向集成化方向發(fā)展,比如3軸加速度加上3軸陀螺儀的集成產(chǎn)品,甚至是SOC,把處理器也集成進(jìn)去,直接提供角度輸出供后端處理器調(diào)用。由于飛行器的應(yīng)用場景一般都是戶外,客戶勢必會做全溫范圍內(nèi)的溫度補(bǔ)償,而在出廠前就對MEMS產(chǎn)品做好了全溫范圍內(nèi)的溫補(bǔ),或者是設(shè)計超級低溫漂的傳感器,都會是MEMS產(chǎn)品在這一領(lǐng)域的發(fā)展方向。當(dāng)然可靠性依然是最重要的指標(biāo)。”他認(rèn)為。
隨著無人機(jī)的功能不斷增加,GPS傳感器、紅外傳感器、氣壓傳感器、超聲波傳感器越來越多地被用到無人機(jī)上。方案商已經(jīng)在利用紅外和超聲波傳感器來開發(fā)出可自動避撞的無人機(jī),以滿足將來相關(guān)法規(guī)的要求。集成了GPS傳感器的無人機(jī)則可以實現(xiàn)一鍵返航功能,防止無人機(jī)飛行丟失。而內(nèi)置了GPS功能的無人機(jī),可以在軟件中設(shè)置接近機(jī)場或航空限制的敏感地點,不讓飛機(jī)起飛。
推薦閱讀:
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗法則?
- 一文看懂電壓轉(zhuǎn)換的級聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計簡介
- 如何通過基本描述找到需要的電容?
技術(shù)文章更多>>
- 混合信號示波器的原理和應(yīng)用
- 功率器件熱設(shè)計基礎(chǔ)(十)——功率半導(dǎo)體器件的結(jié)構(gòu)函數(shù)
- JFET 共源共柵提高了電流源性能
- 福耀玻璃曹德旺主席蒞臨深圳傲科指導(dǎo)交流并與傲科達(dá)成戰(zhàn)略合作意向
- 京東工業(yè)元器件自營服務(wù)商配套能力再升級 與廣東芯博通達(dá)成合作
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索