指紋識別過程同所有的生物體特征識別的過程類似,分為用戶注冊和特征匹配2個(gè)部分。首先,需要錄入指紋圖像,對獲取的原始圖像進(jìn)行處理,包括圖像增強(qiáng)、分割、細(xì)化、二值化等。然后,對指紋的細(xì)節(jié)特征進(jìn)行提取,比較常見的特征點(diǎn)有分叉點(diǎn)、端點(diǎn),最后,生成模板儲(chǔ)存在系統(tǒng)數(shù)據(jù)庫中。無論是驗(yàn)證或者辨識的過程,都需要將待識別的用戶的指紋圖像再一次進(jìn)行同樣的圖像分割、細(xì)化、二值化、特征提取等一系列步驟,生成和數(shù)據(jù)庫模板同樣的數(shù)據(jù)格式,最后,進(jìn)行比對,得出識別的結(jié)果。
現(xiàn)有的指紋識別算法的前提條件是使用相同的指紋識別器上采集指紋或認(rèn)證。所以,在網(wǎng)上的很多用戶只能用同一類指紋識別器才能實(shí)現(xiàn)認(rèn)證,實(shí)踐證明:如果換作不同的指紋識別器,驗(yàn)證系統(tǒng)的性能將大大降低,這是因?yàn)橹讣y識別器沒有標(biāo)準(zhǔn)的互換規(guī)定。
由于各種識別器的使用算法的不同,要使用指紋識別器的各系統(tǒng)需要個(gè)別的登錄,而且,認(rèn)證時(shí)必須使用與登錄時(shí)使用的識別器類型相同。這說明個(gè)人和系統(tǒng)需要保留多個(gè)不同種類的識別器。解決不同識別器之問的通用算法就成為目前研究的一個(gè)很有意義的課題,這樣,用戶可以在自己的電腦上使用不同的識別器,方便了在線指紋驗(yàn)證系統(tǒng)的使用價(jià)值 。
由于某類指紋傳感器僅僅適合同種類型的采集儀驗(yàn)證使用,為了允許更多的用戶使用和阻止假冒用戶試圖欺騙系統(tǒng),多傳感器指紋融合提高系統(tǒng)的性能顯得很有必要。本文提出一種簡單的融合策略研究了兩類常用的指紋傳感器一光學(xué)傳感器和電容傳感器。兩類傳感器分別采集兩幅圖像后通過預(yù)處理程序提取細(xì)節(jié)點(diǎn)后分別與模板指紋相匹配,得到2個(gè)匹配分?jǐn)?shù),然后,把這2個(gè)匹配分?jǐn)?shù)通過融合規(guī)則得到最后的匹配分?jǐn)?shù),通過與單一傳感器性能比較表明:融合后的結(jié)果對系統(tǒng)的性能有了很大的提高。
1 提出的融合框架
圖1為提出的多傳感器指紋驗(yàn)證系統(tǒng)框架圖 。首先,通過光學(xué)和電容傳感器采集用戶的指紋圖像。然后,對圖像進(jìn)行預(yù)處理和分別提取兩類傳感器采集的指紋圖像的特征,基于細(xì)節(jié)點(diǎn)的匹配算法被分別應(yīng)用到光學(xué)和電容細(xì)節(jié)點(diǎn)集,因此,有2個(gè)匹配分?jǐn)?shù),并使用融合規(guī)則融合這些分?jǐn)?shù)。
1.1 指紋傳感器的類型和工作原理
由于當(dāng)今指紋傳感器規(guī)格很多,但是,至今仍然沒有一個(gè)恰當(dāng)和統(tǒng)一的協(xié)議和標(biāo)準(zhǔn)。目前,市場上現(xiàn)有的傳感器主要有光學(xué)傳感器和電容式傳感器兩類。
1.1.1 光學(xué)傳感器工作原理
它的基本原理如下:將手指按壓在玻璃平面的一側(cè),在玻璃的另一側(cè)安裝有LED光源和CCD攝像頭,LED發(fā)出的光束以一定的角度照射向玻璃,攝像頭用于接收從玻璃表面反射回的光線。手指上的脊線與玻璃表面接觸,谷線不與玻璃表面接觸,因此,照射在指紋脊線所接觸部分的玻璃表面的光線被漫反射,而照射在指紋谷線所對應(yīng)的玻璃表面的光線被全反射,從而在由CCD攝像頭捕獲的圖像中,對應(yīng)指紋脊線的部分顏色較深,對應(yīng)指紋谷線的部分顏色較淺。
1.1.2 電容傳感器工作原理
電容傳感器原理根據(jù)按壓到采集頭上的手指的脊和谷在手指表皮和芯片之間產(chǎn)生不同的電容,芯片通過測量空間中的不同的電磁場得到完整的指紋。由這一構(gòu)造原理,可以大大地提高指紋的防偽性。偽造的指紋一般用硅樹脂或者白明膠等絕緣材料,在電容傳感器上是無法成像的,這樣使偽造的指紋無用武之地。但電容技術(shù)的芯片昂貴,且易受到干擾。
1.2 指紋圖像處理
在該識別過程中,首先,通過指紋采集儀器采集到指紋 J,由于采集指紋圖像時(shí)圖像質(zhì)量不高或者在捺取指紋過程中因用力不均造成指紋畸變,常常會(huì)造成指紋圖像分割的不準(zhǔn)確,給后續(xù)的指紋識別帶來更大的困難,造成指紋自動(dòng)識別系統(tǒng)的拒識或誤識,所以,指紋采集后的第一個(gè)關(guān)鍵技術(shù)就是對采集到的指紋圖像進(jìn)行預(yù)處理,包括對指紋圖像的增強(qiáng)、二值化和細(xì)化等。預(yù)處理完成后即可進(jìn)行特征提取,然后,進(jìn)行特征匹配,輸出匹配結(jié)果,如圖2。
最后,細(xì)節(jié)點(diǎn)被提取出來,細(xì)節(jié)點(diǎn)定義為:端點(diǎn)和分又點(diǎn)(如圖3),紋線端點(diǎn)是一條紋路的終結(jié)點(diǎn),而紋線分叉點(diǎn)是一條紋路再次分開成為兩條紋路的點(diǎn)。這2種特征點(diǎn)在指紋圖像中出現(xiàn)的幾率最大、最穩(wěn)定,易于檢測,而且,足以描述指紋的唯一性。
[page]
其中,電容傳感器工作原理記錄了點(diǎn)集P中第i個(gè)特征點(diǎn)的3條信息: 坐標(biāo)、Y坐標(biāo)與方向,電容傳感器工作原理則記錄了點(diǎn)集Q中第j個(gè)特征點(diǎn)的3條信息:x坐標(biāo),y坐標(biāo)與方向。假設(shè)兩幅指紋圖可以完全匹配起來,則可通過對輸入的指紋圖作某種變換(旋轉(zhuǎn)、平移與伸縮)得到模板中的指紋圖,因此,點(diǎn)集P可以通過旋轉(zhuǎn)、平移與伸縮等變換近似成點(diǎn)集Q。
為了能夠?qū)⑤斎胫讣y圖像中的某一個(gè)特征點(diǎn)按照一定的變換方式轉(zhuǎn)換成模板指紋圖像中的相對應(yīng)位置,需要知道相應(yīng)的變換因子,△x與△y分別為x,y方向上的平移因子,△θ則是旋轉(zhuǎn)因子。匹配基準(zhǔn)點(diǎn)的確定是通過判斷這2個(gè)三角形的相似程度得到的,在求取了兩幅指紋圖像之間的匹配基準(zhǔn)點(diǎn)和變換因子后,本文對待識別指紋相對于模板指紋進(jìn)行旋轉(zhuǎn)、平移變換,以便判斷兩枚指紋是否來自于同一個(gè)手指。在本文中,求取變換后的待識別指紋的特征點(diǎn)坐標(biāo)位置和所在區(qū)域的紋線方向。然后,將變換后的待識別指紋特征點(diǎn)集疊加到模板指紋特征點(diǎn)集上,檢測2個(gè)特征點(diǎn)集合中相重合的特征點(diǎn)數(shù)目。由于本文中的匹配是一種非精確匹配,即使是一對匹配的特征點(diǎn)對,它們之問也不會(huì)完全重合,總是在位置、方向上存在有一定的偏差,所以,必須有一定的偏差容忍度。
為此,本文采用一種稱為界定盒的方法。對模板指紋特征點(diǎn)集中的每一個(gè)特征點(diǎn),選取它周圍的一個(gè)矩形區(qū)域作為它的界定盒,只要變換后的待識別指紋中的特征點(diǎn)經(jīng)過疊加后落在這個(gè)區(qū)域之內(nèi),而且,方向基本一致,可以認(rèn)為這2個(gè)特征點(diǎn)對是一對匹配的特征點(diǎn)。
最后,算法統(tǒng)計(jì)所有相匹配的特征點(diǎn)數(shù)目,通過式(1)轉(zhuǎn)換成匹配分?jǐn)?shù),其中,maxscore是通過疊加匹配的細(xì)節(jié)點(diǎn)個(gè)數(shù)得到的最大匹配得分,Temp—Num和Input—Num分別是模板和輸入指紋的細(xì)節(jié)點(diǎn)數(shù)目
計(jì)算的匹配分?jǐn)?shù)代表了相比較的兩幅指紋的相似程度。參數(shù)值越大,相似性程度越高,而如果得分較小時(shí),說明這一用戶不一定是其宣稱的用戶,訪問將被拒絕。
本文所使用的算法是一種典型的基于特征點(diǎn)坐標(biāo)模型的點(diǎn)模式匹配算法。它對匹配過程中最難的一步一基準(zhǔn)點(diǎn)的確定和變換參數(shù)的求取作了較深入的研究,根據(jù)3個(gè)近鄰的特征點(diǎn)之間的相互關(guān)系來確定基準(zhǔn)點(diǎn)、求取變換參數(shù)。該算法在一定程度上能夠加快基準(zhǔn)點(diǎn)的求取,從而提高整個(gè)匹配算法的速度。同時(shí),該算法是根據(jù)多點(diǎn)來確定變換參數(shù),而不是通常意義上的一點(diǎn),在一定程度上可以消除在特征提取過程中所引入的位置、角度的偏差,得到更為準(zhǔn)確的變換參數(shù)。
1.3 光學(xué)和電容傳感器的融合
So, Sc是分別由光學(xué)傳感器和電容傳感器采集的圖像運(yùn)用匹配算法所獲得的匹配分?jǐn)?shù),s融合后的分?jǐn)?shù)和S。So, Sc之間有如下關(guān)系
2 實(shí)驗(yàn)結(jié)果
隨機(jī)抽取20個(gè)人,每個(gè)人使用3個(gè)手指,分別為大拇指、食指、中指,使用光學(xué)和電容傳感器,每個(gè)手指按壓10次,每個(gè)人采集到的指紋數(shù)為6×10=60,共有指紋20×60=1200。對于每一個(gè)驗(yàn)證算法兩類集合的匹配分?jǐn)?shù)。第一次匹配稱為“真正匹配分?jǐn)?shù) (真正用戶之間)G集合,第二次是“假匹配分?jǐn)?shù)”(“假冒用戶之問”)I集合。
隨機(jī)細(xì)分以上集為2個(gè)大小相同的集合:G=G1 U G2,I=I1 U I2,G1, G2和I1, I2分別是G和I的分離集合。訓(xùn)練集合Tr={G1,I1}用于計(jì)算邏輯融合規(guī)則的權(quán)重,測試集合Tx={G2,I2}用于評價(jià)和比較算法性能。它包含以下幾個(gè)指標(biāo):
訓(xùn)練樣本集合的等錯(cuò)誤率(EER),也就是當(dāng)真正用戶被系統(tǒng)錯(cuò)誤拒絕的百分比(FRR)等于假冒用戶被系統(tǒng)錯(cuò)誤接受的百分比(FAR)。
電容傳感器性能明顯差于光學(xué)傳感器。其原因主要是電容傳感器采集圖像時(shí)的接觸面積遠(yuǎn)遠(yuǎn)小于光學(xué)傳感器。直接導(dǎo)致了其采集的圖像提取的細(xì)節(jié)點(diǎn)數(shù)目少,因此,提取的細(xì)節(jié)點(diǎn)不能彼此正確的匹配。
從等錯(cuò)誤率計(jì)算的融合結(jié)果來看,性能也有很大的提高,邏輯融合減少EER從3.6%到2.9%。測試樣本的結(jié)果也表明融合提高了系統(tǒng)的魯棒性,實(shí)際上,在邏輯融合以后,訓(xùn)練樣本的性能和測試樣本的性能偏差大大減小了。
該實(shí)驗(yàn)結(jié)果與Gian Luca 實(shí)驗(yàn)結(jié)果對比,發(fā)現(xiàn)得到的結(jié)果指標(biāo)低于指標(biāo),其中原因可能是本文使用的采集器性能比較差,以致獲得的指紋圖像質(zhì)量不夠理想而導(dǎo)致指標(biāo)稍弱,另外,可能就是本文使用的算法獲得的匹配結(jié)果不夠理想。
結(jié)語
本文提出了基于光學(xué)和電容傳感器多傳感器指紋驗(yàn)證系統(tǒng)。實(shí)驗(yàn)結(jié)果表明:驗(yàn)證后的多傳感器系統(tǒng)性能優(yōu)于最好的單一傳感器陛能(光學(xué)傳感器),而且,光學(xué)和電容傳感器匹配器兩者之間的互補(bǔ)性也表明了多傳感器融合的可能性,從理論上來說系統(tǒng)本身也獲得了很低的驗(yàn)證錯(cuò)誤率。特征提取過程被分別應(yīng)用到每一個(gè)采集設(shè)備采集到的圖片,應(yīng)用一個(gè)簡單的融合規(guī)則,提高系統(tǒng)的驗(yàn)證性能。因此,融合不同類型的傳感器提高系統(tǒng)性能方案簡單易行。
相關(guān)閱讀:
完美解讀無線傳感器網(wǎng)絡(luò)匯總
TI創(chuàng)意設(shè)計(jì):專用壓力傳感器,只為“壓力”而生!
安森美圖像傳感器,安防攝影機(jī)的終結(jié)者