生物傳感器的電氣特性測(cè)試和技術(shù)分析
發(fā)布時(shí)間:2015-01-29 責(zé)任編輯:xueqi
【導(dǎo)讀】在很多情況下,探測(cè)器就是像晶體管那樣的器件。但是,無(wú)論設(shè)計(jì)使用半導(dǎo)體、電化學(xué)或光架構(gòu)方法,都必須對(duì)傳感器中的電氣部分進(jìn)行適當(dāng)測(cè)試,使得設(shè)計(jì)合格,便于進(jìn)一步開(kāi)發(fā)。
隨著生物/醫(yī)藥、半導(dǎo)體、電子和納米科學(xué)領(lǐng)域的諸多技術(shù)進(jìn)步,生物電子技術(shù)有可能改變個(gè)人健康、加強(qiáng)安全系統(tǒng)、有利于保護(hù)環(huán)境、食物和水、改進(jìn)生活方式。通過(guò)半導(dǎo)體和納米技術(shù),非侵入式物理生物傳感器、芯片實(shí)驗(yàn)室工具、假肢/植入物和遠(yuǎn)程醫(yī)療信息系統(tǒng)的進(jìn)步是有可能實(shí)現(xiàn)的。
生物傳感器是一種分析器件,通常用于分析物(比如感興趣的物質(zhì),或化學(xué)成分)的探測(cè)。利用生物傳感器,可以將生物響應(yīng)轉(zhuǎn)化為電信號(hào),從而了解生物組合、結(jié)構(gòu)和功能。
生成電子輸出信號(hào)的許多生物傳感器/換能器技術(shù)在探測(cè)系統(tǒng)設(shè)計(jì)方面具有巨大諸多優(yōu)勢(shì),可以滿足速度和易用性標(biāo)準(zhǔn)。通過(guò)正確的測(cè)試和校準(zhǔn),電子生物傳感器可以滿足這些標(biāo)準(zhǔn),同時(shí)提供可靠結(jié)果,把虛假的正負(fù)指示降到最低。
生物傳感器/換能器裝置簡(jiǎn)稱生物傳感器,可以定義為履行以下一個(gè)或多個(gè)行為的器件:
1.探測(cè)、記錄、轉(zhuǎn)換、處理和傳輸與生理變化或過(guò)程有關(guān)的信息。
2.利用生物材料監(jiān)測(cè)物質(zhì)(分析物)中各種化學(xué)成分的存在。
3.將電接口(換能器)與生物敏感或選擇元件相結(jié)合。
更具體地說(shuō),生物傳感器包括生物識(shí)別元件,由它來(lái)識(shí)別目標(biāo)分析物。生物傳感器的換能器將識(shí)別事件轉(zhuǎn)換為與感興趣的化學(xué)或生物目標(biāo)的數(shù)量或存在相關(guān)的可測(cè)量信號(hào)。圖1給出常見(jiàn)的生物傳感器模型。
圖1:常見(jiàn)生物傳感器示意圖
生物傳感器系統(tǒng)的性能標(biāo)準(zhǔn)包括:
1. 速度和便于非技術(shù)人員使用(測(cè)試/校準(zhǔn)/維護(hù))。
2. 對(duì)目標(biāo)分析物的選擇性。為了獲得正確的結(jié)果,必須使化學(xué)物質(zhì)的干擾降到最低。
3. 靈敏度/分辨率。
4. 線性度(傳感器校準(zhǔn)曲線的最大線性值。對(duì)于高底物濃度檢測(cè),傳感器線性度必須較高)。
5. 精度/可重復(fù)性。
6. 動(dòng)態(tài)范圍。分析物的高濃度不能降低傳感器的可用性。
7. 環(huán)境魯棒性(對(duì)溫度、電噪聲、物理沖擊、振動(dòng)等相對(duì)不敏感)。
8. 可用壽命/適應(yīng)性。
9. 安全性/完整性(對(duì)人員、設(shè)備和分析物)。
為了實(shí)現(xiàn)快速檢測(cè)以及可讀電子輸出,研究人員正在開(kāi)發(fā)將生物傳感器識(shí)別元件功能和半導(dǎo)體器件結(jié)合在一起的生物傳感器,它可作為便攜設(shè)備用于家庭醫(yī)療監(jiān)控系統(tǒng)等領(lǐng)域。類似地,可與植入醫(yī)療系統(tǒng)一起使用的生物傳感器也正處于研究之中。
傳感器設(shè)計(jì)
生物傳感器的設(shè)計(jì)方法有很多種。一種設(shè)計(jì)使用寡核苷酸傳感器和核酸反應(yīng)來(lái)表明病原體的存在。另一種設(shè)計(jì)采用表面等離子體共振(SPR)來(lái)檢測(cè)生物分子,如蛋白質(zhì)和DNA?;赟PR的傳感器可以對(duì)分子間的相互作用提供實(shí)時(shí)無(wú)標(biāo)記研究,其傳感器芯片接口便于特定配體與換能器表面的吸附,并提供表面濃度的高靈敏測(cè)量。
基于組織的傳感器也正在開(kāi)發(fā)之中。它們利用芯片上的活細(xì)胞,芯片可以對(duì)生物和化學(xué)威脅試劑的出現(xiàn)做出機(jī)能性響應(yīng)。由于其設(shè)計(jì)是模擬多細(xì)胞人體組織的功能,因此,這些傳感器應(yīng)當(dāng)對(duì)已知和未知試劑做出響應(yīng)。換能器將檢測(cè)活細(xì)胞表面電荷的微小變化。
電化學(xué)生物傳感器正在用于許多應(yīng)用。通常,電化學(xué)生物傳感器基于產(chǎn)生或消耗電子響應(yīng)的酶(這種酶稱作氧化還原酶)促作用。該傳感器基底可能包括3個(gè)電極:參考電極、工作電極和反電極。目標(biāo)分析物涉及在活躍電極表面發(fā)生的反應(yīng),這個(gè)反應(yīng)可能引起跨越雙層的電子傳輸(產(chǎn)生電流),還有可能貢獻(xiàn)雙層電勢(shì)(產(chǎn)生電壓)。既可以在固定電勢(shì)下對(duì)電流進(jìn)行測(cè)量(電子流速與分析物濃度成正比),也可以在零電流情況下對(duì)電勢(shì)進(jìn)行測(cè)量(這給出了對(duì)數(shù)響應(yīng)[1])。
又如,電位型電化學(xué)生物傳感器(在零電流產(chǎn)生的電勢(shì))的對(duì)數(shù)響應(yīng)具有較寬的動(dòng)態(tài)范圍。這類生物傳感器往往是通過(guò)在塑料基底上對(duì)電極圖案進(jìn)行絲網(wǎng)印刷而制作,其基底覆蓋一層導(dǎo)電聚合物,然后粘附一些蛋白(酶或抗體)。這些傳感器只有兩個(gè)電極,而且靈敏度和魯棒性非常高。
所有的生物傳感器通常都涉及最小的樣品制備,因?yàn)樯锩舾性?duì)于所涉及的分析物具有高度選擇性。由于傳感器表面發(fā)生變化,致使導(dǎo)電聚合物層內(nèi)的電化學(xué)或物理變化產(chǎn)生信號(hào)。這種變化可以歸因于離子強(qiáng)度、PH值、水化反應(yīng)和氧化還原反應(yīng),后者源自基底上的酶標(biāo)記翻轉(zhuǎn)。場(chǎng)效應(yīng)晶體管(FET),其柵區(qū)被酶或抗體更改,也可以檢測(cè)濃度非常低的各種分析物,因?yàn)榉治鑫锱cFET柵區(qū)的結(jié)合將引起漏-源電流的變化[1]。
近日,在納米科學(xué)領(lǐng)域,通過(guò)使用石墨烯,生物傳感器有許多進(jìn)步。石墨烯是2004年發(fā)現(xiàn)的,因其特有的物理化學(xué)、高靈敏度和優(yōu)異的力學(xué)、熱學(xué)和電學(xué)特性而備受關(guān)注?;谑┑纳飩鞲衅骺赡芫哂懈叩撵`敏度,因?yàn)槭┦鞘亩S單原子層,可能實(shí)現(xiàn)表面摻雜劑和吸附物之間相互作用的最大化。同用于生物檢測(cè)應(yīng)用碳納米管相比,石墨烯具有更低的約翰遜噪聲。約翰遜噪聲是電荷載流子熱運(yùn)動(dòng)而引起的電阻材料中的噪聲。因此,石墨烯生物傳感器中載流子濃度的微小變化可能引起待測(cè)電導(dǎo)率的顯著變化。
根據(jù)分析物和生物傳感器識(shí)別元件的不同,生物傳感器的換能器可能利用以下機(jī)制之一:
安培計(jì):安培計(jì)器件檢測(cè)電流變化。它們對(duì)生物系統(tǒng)與電極之間交換電子而產(chǎn)生的電流進(jìn)行測(cè)量。
電位計(jì):某些反應(yīng)將引起待測(cè)電極之間電壓(在恒定電流的電勢(shì))變化。
電導(dǎo):電導(dǎo)測(cè)量器件對(duì)兩個(gè)電極之間電導(dǎo)率的變化進(jìn)行檢測(cè)。
電阻:電阻率是電導(dǎo)率的倒數(shù),可以通過(guò)類似方法進(jìn)行測(cè)量。
電容:當(dāng)生物識(shí)別反應(yīng)導(dǎo)致生物傳感器識(shí)別元件附近介質(zhì)中介電常數(shù)發(fā)生變化時(shí),其電容測(cè)量方法可以用作換能器。
壓電:在壓電材料中存在著力學(xué)和電學(xué)特性之間的耦合。利用這種耦合可以創(chuàng)建一個(gè)電振蕩器,其頻率是變化的,而且可以通過(guò)施加其表面質(zhì)量的變化進(jìn)行測(cè)量。在生物傳感器情況下,質(zhì)量是可以變化的,因?yàn)樵谄浔砻姘l(fā)生了反應(yīng)。
熱:這些器件對(duì)溫度變化進(jìn)行測(cè)量。
光:光學(xué)生物傳感器將濃度、質(zhì)量或分子數(shù)量變化與光特性變化進(jìn)行相關(guān)。要想使這種方法有效,生物識(shí)別反應(yīng)的反應(yīng)物或生成物之一必須與比色、熒光或發(fā)光指標(biāo)關(guān)聯(lián)。有時(shí)候,利用光纖可以將光信號(hào)從光源引導(dǎo)至檢測(cè)器。
[page]
傳感器特性分析:驗(yàn)證過(guò)程第一步
研發(fā)項(xiàng)目的目標(biāo)是克服生物傳感器系統(tǒng)設(shè)計(jì)局限性。例如,生物傳感器設(shè)計(jì)的一個(gè)問(wèn)題是實(shí)現(xiàn)生物親合元件和無(wú)機(jī)換能器元件之間穩(wěn)定、可重復(fù)的接口。出于手持便攜性的考慮,希望生物傳感器小型化,且具有足夠靈敏度,這將給生物分子與換能器界面的耦合帶來(lái)技術(shù)挑戰(zhàn)。因此,無(wú)論是在研發(fā)實(shí)驗(yàn)室還是在生產(chǎn)中,對(duì)生物傳感器進(jìn)行快速而準(zhǔn)確的特性分析,是檢驗(yàn)生物傳感器/換能器接口是否合格以及生物檢測(cè)系統(tǒng)的最終運(yùn)行的重要手段。
典型測(cè)試程序任務(wù)是開(kāi)發(fā)或驗(yàn)證生物傳感器性能度量指標(biāo)。由于對(duì)試劑或反應(yīng)中細(xì)胞和組織信號(hào)的提取非常復(fù)雜,通常希望對(duì)生物傳感器的主要部件進(jìn)行直接的電流-電壓(I-V)特性分析。I-V特性分析的時(shí)間只占大多數(shù)類型功能測(cè)試時(shí)間的很小一部分,但卻是其正式運(yùn)行的重要預(yù)示。例如,I-V數(shù)據(jù)可以用來(lái)研究異常、定位曲線的最大或最小斜率,以及進(jìn)行可靠性分析。根據(jù)設(shè)計(jì)細(xì)節(jié),I-V特性分析往往適合基于電流計(jì)、電位計(jì)、電導(dǎo)率、電阻和熱原理的傳感器。
通常,I-V測(cè)試為待測(cè)器件(DUT)施加電壓或電流,然后測(cè)試其對(duì)激勵(lì)做出的響應(yīng)。還可能采用溫度測(cè)量。測(cè)試程序可能涉及為某個(gè)連接焊盤(pán)施加激勵(lì),探測(cè)集成電路,并測(cè)量DUT響應(yīng)。根據(jù)DUT的不同,信號(hào)電平可能相當(dāng)?shù)?,需要高靈敏度源和測(cè)量?jī)x器及測(cè)試技術(shù),最大限度地減少誤差的外部來(lái)源。
利用源測(cè)量單元(SMU)儀器對(duì)生物傳感器性能進(jìn)行特性分析
在很多情況下,生物傳感器將由醫(yī)生、軍人、公共安全部隊(duì)用于便攜系統(tǒng),還可以用于家庭健康監(jiān)控。這將對(duì)傳感器使用功率需求提出限制,而且可能限定提供給測(cè)量電路的電壓或電流輸出電平。在電池供電系統(tǒng)中,傳感器輸出電流范圍是納安到毫安,輸出電壓范圍是納伏到伏。對(duì)于這么寬的范圍,不同的級(jí)別需要不同的測(cè)量技術(shù)和工具。
實(shí)施I-V特性分析的最佳工具之一是源測(cè)量單元(SMU)或數(shù)字源表SMU儀器。在I-V特性分析中,由于復(fù)雜的觸發(fā)問(wèn)題,直流電源和測(cè)量?jī)x器的集成可能是有問(wèn)題的。簡(jiǎn)言之,SMU儀器在一部?jī)x器內(nèi)實(shí)現(xiàn)了精確電源(PPS)能力與高性能數(shù)字多用表(DMM)的集成。例如,SMU儀器在測(cè)量電流時(shí)可同時(shí)起到源或降電壓作用,在測(cè)量電壓時(shí)可起到源或降電流的作用。圖2給出SMU儀器作為恒流源和伏特計(jì)的配置,它用于測(cè)量DUT的響應(yīng)。
圖2:SMU儀器作為恒流源和伏特計(jì)的配置,用于測(cè)量DUT的響應(yīng)
SMU儀器還可用作獨(dú)立的恒壓源或恒流源、伏特計(jì)、安培計(jì)和歐姆表,還可用作精密電子負(fù)載。其高性能架構(gòu)還允許將其用作脈沖發(fā)生器、波形發(fā)生器和自動(dòng)I-V特性分析系統(tǒng)。
這些儀器的雙極電壓和電流源是由微處理器控制的,這使得I-V特性分析更加高效,并簡(jiǎn)化儀器建立。使用SMU儀器時(shí),可以在其程序內(nèi)存中存儲(chǔ)許多不同測(cè)試序列,并通過(guò)簡(jiǎn)單的觸發(fā)信號(hào)予以執(zhí)行。測(cè)試數(shù)據(jù)可以存儲(chǔ)在緩存中,直到I-V掃描完成,然后下載至計(jì)算機(jī)進(jìn)行處理和分析。
由于在生物、化學(xué)、材料和電化學(xué)等諸多領(lǐng)域,致力于生物傳感器和其他生物電子技術(shù)的研究人員數(shù)量眾多,因此,測(cè)試儀器的易用性和低學(xué)習(xí)曲線非常重要。這些研究人員可能不熟悉電氣特性分析工具,如SMU儀器,但需要在實(shí)驗(yàn)室對(duì)其器件進(jìn)行I-V特性分析。
觸摸屏技術(shù)的進(jìn)步以及智能手機(jī)和平板電腦的廣泛普及推動(dòng)了直觀操作的發(fā)展,臺(tái)式儀器的圖形用戶界面可能大大簡(jiǎn)化學(xué)習(xí)曲線和整機(jī)易用性。采用觸摸屏方法,用戶感覺(jué)很舒適,不容易出錯(cuò);他們可以直觀了解怎樣使用接口。觸摸屏系統(tǒng)使每個(gè)人第一次接觸儀器時(shí)就成為“專家用戶”,無(wú)論他是儀器的新用戶還是行家里手。同傳統(tǒng)培訓(xùn)方法相比,使用觸摸屏可以大大縮短培訓(xùn)時(shí)間、提高操作精度,并提高整體使用效率。
圖3:吉時(shí)利2450型數(shù)字源表SMU儀器采用高級(jí)電容觸摸屏圖形用戶界面
吉時(shí)利2450型交互式數(shù)字源表SMU儀器簡(jiǎn)化了非傳統(tǒng)用戶的學(xué)習(xí)曲線,使之從使用多層菜單結(jié)構(gòu)和多功能按鈕配置功能的繁瑣工作中解脫出來(lái)。2450型儀器使用基于圖標(biāo)的平面菜單系統(tǒng),就像在智能消費(fèi)電子產(chǎn)品中使用的菜單系統(tǒng)一樣簡(jiǎn)單,如平板電腦或智能手機(jī)上顯示的應(yīng)用圖標(biāo)排列。
圖4:2450型儀器屏幕菜單
生物場(chǎng)效應(yīng)晶體管(BioFET)傳感器測(cè)試
如前所述,利用FET和生物材料可以制作生物傳感器。FET利用電場(chǎng)控制半導(dǎo)體材料中載流子溝道形狀和傳導(dǎo)率。生物場(chǎng)效應(yīng)晶體管組成包括:半導(dǎo)體換能器、介質(zhì)層、生物功能表面、分析物及參考電極(場(chǎng)效應(yīng)晶體管的柵極),如圖5所示。
BioFET半導(dǎo)體換能器的制作過(guò)程如下。介質(zhì)層是氧化物,如二氧化硅,它有兩項(xiàng)任務(wù)。第一項(xiàng)任務(wù)是將FET溝道與液體進(jìn)行隔離,第二項(xiàng)任務(wù)是將表面電荷靜電耦合至溝道。在介質(zhì)層上面是生物功能層, 它起到固定生物分子接受器的作用,能夠結(jié)合期望的分子。分析物是包含溶解的樣本分子的解決方案。參考電極允許調(diào)整器件,從而實(shí)現(xiàn)其靈敏度最大化。如果目標(biāo)分子與接受器結(jié)合,那么表面電荷密度將發(fā)生變化。這種變化將改變半導(dǎo)體電勢(shì)以及FET溝道連通性[2]。
圖5:生物場(chǎng)效應(yīng)晶體管(BioFET)概念圖
利用兩個(gè)2450型數(shù)字源表SMU儀器可以對(duì)BioFET進(jìn)行特性分析,從而對(duì)傳感器進(jìn)行I-V特性分析。確定BioFET的I-V參數(shù)有助于確保其在預(yù)期應(yīng)用中恰當(dāng)?shù)匕l(fā)揮作用,并滿足性能要求。利用2450型儀器可以進(jìn)行多種I-V測(cè)試,包括柵極泄漏、擊穿電壓、閾值電壓、傳輸特性以及漏電流。進(jìn)行測(cè)試所需的2450型SMU儀器數(shù)量取決于需要偏置和測(cè)量的FET端口數(shù)。
這個(gè)應(yīng)用實(shí)例說(shuō)明怎樣繪制三端口FET漏電流系列(VDS-ID)曲線。該技術(shù)有可能用于BioFET器件。
所需設(shè)備
● 兩部2450型交互式數(shù)字源表SMU儀器
● 4根三軸電纜(吉時(shí)利7078-TRX-10型號(hào))
● 金屬屏蔽測(cè)試夾具或探針臺(tái),以及母三軸連接器
● 三軸三通接頭(吉時(shí)利237-TRX-T型號(hào))
● 外部硬件觸發(fā)器電纜不同,具體取決于所用指令:
● 對(duì)于SCPI指令:1根DB-9公-母9針電纜,實(shí)現(xiàn)2450型器后部數(shù)字I/O端口彼此連接。
● 對(duì)于TSP指令:1根TSP-Link交叉網(wǎng)線(吉時(shí)利CA-180-3A型網(wǎng)線,在2450型儀器中已包含),實(shí)現(xiàn)TSP-Link端口彼此連接。
● 2450型儀器與計(jì)算機(jī)連接電纜不同,具體取決于所用指令集:
● 對(duì)于SCPI指令:2根GPIB電纜、2根USB電纜或2根以太網(wǎng)電纜
● 對(duì)于TSP指令:1根GPIB電纜、1根USB電纜或1根以太網(wǎng)電纜
建立遠(yuǎn)程通信
這個(gè)應(yīng)用可以通過(guò)儀器支持的任何通信接口(GPIB、USB或以太網(wǎng))運(yùn)行。
程控通信接口后面板連接位置如下圖所示。
圖6:2450型儀器程控接口連接
設(shè)立外部硬件觸發(fā)器
為了支持兩部2450型源測(cè)量單元(SMU)儀器步進(jìn)掃描電壓之間的同步,將其外部觸發(fā)器彼此相連。所用電纜取決于用于控制測(cè)試的2450型儀器編程指令集。
SCPI指令集連接
如果您使用SCPI指令集,請(qǐng)利用DB-9母-母電纜連接儀器后面板的數(shù)字I/O插孔,如下圖所示。
圖7:SCPI編程實(shí)例中GPIB和DB-9電纜連接
上圖還給出利用GPIB程控通信接口實(shí)現(xiàn)的通信連接。利用GPIB電纜(#1)實(shí)現(xiàn)計(jì)算機(jī)(控制器)GPIB端口與2450型儀器(#1)后面板IEEE-488插孔的連接。利用GPIB電纜(#2)實(shí)現(xiàn)兩部2450型儀器IEEE-488插孔之間的連接。
當(dāng)利用USB電纜連接計(jì)算機(jī)和2450型SMU儀器時(shí),每部?jī)x器必須利用獨(dú)立USB電纜與計(jì)算機(jī)相連。
當(dāng)使用以太網(wǎng)電纜連接計(jì)算機(jī)和2450型SMU儀器時(shí),儀器和計(jì)算機(jī)必須使用以太網(wǎng)開(kāi)關(guān)或集線器連接。
TSP指令集連接
當(dāng)測(cè)試腳本處理器(TSP)指令集用于遠(yuǎn)程編程時(shí),利用CA-180-3A型交叉電纜(2450型儀器中包含該電纜)實(shí)現(xiàn)2450儀器后面板TSP-Link端口的互連(參見(jiàn)下圖)。
圖8:TSP指令集連接
對(duì)于計(jì)算機(jī)與2450型儀器的GPIB通信,只需要1根電纜,實(shí)現(xiàn)GPIB接口與2450型儀器IEEE-488接口的連接(圖8中2450型#1)。將2450型#1的TSP-Link節(jié)點(diǎn)設(shè)為節(jié)點(diǎn)1,將2450型#2的TSP-Link節(jié)點(diǎn)設(shè)為節(jié)點(diǎn)2。
通過(guò)前面板改變2450型TSP-Link節(jié)點(diǎn):
1.按壓主屏左上角的通信狀態(tài)指示器,先后選擇改變?cè)O(shè)置,系統(tǒng)通信窗口打開(kāi)。
2.在TSP-Link選項(xiàng)下,選擇節(jié)點(diǎn)旁的按鈕,然后進(jìn)入期望的節(jié)點(diǎn)號(hào)。
3.選擇初始化。
4.按壓菜單按鈕,返回主屏。
對(duì)于TSP-Link網(wǎng)絡(luò)中的所有2450型SMU儀器,重復(fù)這個(gè)指令。
器件連接
為了測(cè)試漏系列曲線,對(duì)兩部2450型SMU儀器進(jìn)行配置,使之源電壓并測(cè)量電流。在這個(gè)電路中,2450型#2的Force HI端與BioFET的柵極相連,2450型#1的Force HI端與與其漏極相連。BioFET的電源端與兩部2450型SMU儀器的Force LO端相連。當(dāng)對(duì)所有三端進(jìn)行源和測(cè)量時(shí),還需要第三部2450型儀器。利用兩部2450型SMU儀器可對(duì)BioFET進(jìn)行I-V測(cè)試配置,參見(jiàn)圖9。
圖9:BioFET三端I-V測(cè)試配置
圖10給出從兩部2450型SMU儀器后部面板端子到BioFET的連接方式。
圖10:測(cè)試三端BioFET時(shí)兩部2450型儀器配置
在這個(gè)例子中,使用4根三軸電纜(7078-TRX-10型),實(shí)現(xiàn)2450型儀器后面板母三軸插孔與BioFET器件的互連,它被安裝在一個(gè)金屬屏蔽的測(cè)試夾具內(nèi),與母三軸插孔連接。利用三軸三通(237-TRX-T型)實(shí)現(xiàn)兩部2450型儀器的Force LO端與BioFET源端連接。
對(duì)于測(cè)試FET的SCPI或TSP編程序列,請(qǐng)參照2450型儀器用戶手冊(cè)第7部分:FETI-V特性測(cè)量。圖11給出典型FET系列曲線。其結(jié)果可能因BioFET及使用生物功能材料類型的不同而發(fā)生變化。
圖11:兩部2450型儀器生成的典型FET漏系列曲線
3C精確測(cè)試:電纜、電導(dǎo)和電容
無(wú)論使用什么樣的儀器,其與DUT之間的連接都是測(cè)量系統(tǒng)的重要組成部分。了解和管理這些連接的局限性對(duì)于準(zhǔn)確測(cè)量至關(guān)重要。噪聲源、電纜長(zhǎng)度和電纜電容都可能影響測(cè)量質(zhì)量;信號(hào)電平越低,這些問(wèn)題就越重要。為了把問(wèn)題影響降到最小,測(cè)量電路與電纜及連接器應(yīng)當(dāng)與測(cè)試信號(hào)匹配。此外,電纜和測(cè)試引線應(yīng)當(dāng)認(rèn)真?zhèn)鬟f和安裝。
電纜 對(duì)當(dāng)測(cè)試應(yīng)用電纜進(jìn)行評(píng)估時(shí),應(yīng)當(dāng)考慮以下這些問(wèn)題:
● 測(cè)試環(huán)境中的電氣噪聲有多大? 噪聲被定義為在感興趣信號(hào)上疊加的任何不需要的信號(hào)。電磁噪聲源包括交流電源線、電機(jī)和發(fā)電機(jī)、變壓器、熒光燈、CRT顯示器、計(jì)算機(jī)、無(wú)線發(fā)射機(jī)等。根據(jù)信號(hào)和噪聲惡性,一旦儀器輸入端采集到信號(hào),就不可能將二者分離。 要盡可能使用最短的傳輸電纜和測(cè)試引線,從而把其對(duì)噪聲源的暴露降到最低。然后,使其牢固地就位,無(wú)法移動(dòng),不會(huì)在電磁場(chǎng)中產(chǎn)生雜散電磁場(chǎng)。
● 信號(hào)源與測(cè)量系統(tǒng)終端之間的距離是多少?電線具有電阻,這取決于其組成、長(zhǎng)度和直徑。電阻隨著電線長(zhǎng)度的增加而增加,隨著電線直徑的增加而降低。電阻是電纜整體效應(yīng)的一部分,該效應(yīng)是測(cè)量電路模擬輸入的一部分。高電纜電阻與低模數(shù)入電阻的共同作用可能導(dǎo)致通過(guò)互連電纜的較大電壓降,從而帶來(lái)測(cè)量誤差。
導(dǎo)體 在屏蔽和非屏蔽電纜中使用的導(dǎo)體可能是實(shí)心線或絞合線。實(shí)心線信號(hào)衰減最小,但絞合線更靈活,而且可能更容易傳遞和安裝。導(dǎo)體可能是裸銅線、鍍銀或鍍錫。連接器和導(dǎo)體材料應(yīng)當(dāng)匹配,從而使電阻最小,并減少熱生電磁場(chǎng)。
為了實(shí)現(xiàn)最高的信號(hào)完整性,應(yīng)使用屏蔽導(dǎo)體電纜。屏蔽可以降低信號(hào)引線拾取的電磁噪聲,還有助于降低來(lái)自攜帶高頻信號(hào)導(dǎo)體的電磁輻射。利用不同類型的金屬絲編織層或金屬絲編織層與鋁箔組合,都可以實(shí)現(xiàn)屏蔽。同單層屏蔽相比,多層或多銅箔屏蔽層在微弱信號(hào)拾取和輻射方面更有效。不過(guò),這往往使電纜更僵硬和更難傳遞和安裝。
在選擇屏蔽電纜時(shí),應(yīng)當(dāng)考慮以下因素:
● 頻率噪聲越高就越難衰減,需要更復(fù)雜的屏蔽。
● 簡(jiǎn)單的螺旋絲纏繞箔是最低效的類型屏蔽。
● 緊密編織、雙編織或編織加鋁箔將提供更有效的屏蔽。
● 苛刻的大氣、濕度等可能降低屏蔽的有效性。在某些情況下,這些污染物可能會(huì)滲入電纜并降低外絕緣套下的屏蔽。如果可能,應(yīng)避免在這種環(huán)境下進(jìn)行測(cè)試。
電容 對(duì)于許多生物傳感器來(lái)說(shuō),輸出信號(hào)可能比作帶有電阻的串行電壓源。類似地,模擬儀器輸入端可以比作帶有輸入電阻的并行儀表。在測(cè)試期間,儀器輸入端吸入少量電源必須能夠提供的偏置電流?;ミB電纜時(shí)這個(gè)電路的重要組成部分,而且可能引入電阻、電容和電感效應(yīng),具體取決于長(zhǎng)度、容量、成分、路由和物理環(huán)境。
對(duì)于高速、快速變化的信號(hào),電路電感和電容可能是測(cè)量速度的嚴(yán)重阻礙,即使信號(hào)源和儀器阻抗完全匹配。通常,寄生電容比電感危害更大。來(lái)自高阻抗源的信號(hào)需要更長(zhǎng)的時(shí)間才能在儀器輸入端穩(wěn)定在,因?yàn)樾盘?hào)電流電平有限,需要更多的時(shí)間為電纜電容充電。在這種情況下,應(yīng)在信號(hào)穩(wěn)定之前,進(jìn)行測(cè)量,避免錯(cuò)誤讀數(shù)。
結(jié)論
在開(kāi)發(fā)早期階段,利用I-V特性分析技術(shù),可以簡(jiǎn)化用于生物檢測(cè)系統(tǒng)和分析儀器的傳感器合格驗(yàn)證。在很多情況下,這些技術(shù)可以用于傳感器生產(chǎn)測(cè)試中。
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動(dòng)化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計(jì)簡(jiǎn)介
- 如何通過(guò)基本描述找到需要的電容?
技術(shù)文章更多>>
- 瑞典名企Roxtec助力構(gòu)建安全防線
- 貿(mào)澤與Cinch聯(lián)手發(fā)布全新電子書(shū)深入探討惡劣環(huán)境中的連接應(yīng)用
- 第二十二屆中國(guó)國(guó)際軟件合作洽談會(huì)在成都順利舉行
- 混合信號(hào)示波器的原理和應(yīng)用
- 功率器件熱設(shè)計(jì)基礎(chǔ)(十)——功率半導(dǎo)體器件的結(jié)構(gòu)函數(shù)
技術(shù)白皮書(shū)下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達(dá)控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢(mèng)想電子
模擬鎖相環(huán)
耐壓測(cè)試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池