了解鏡像抑制及其對所需信號的影響
發(fā)布時(shí)間:2018-01-31 來源:Patrick Wiers 責(zé)任編輯:wenwei
【導(dǎo)讀】AD9361 和 AD9371 RadioVerse™ 寬帶收發(fā)器系列均提供無與倫比的集成度、眾多的功能和大量用戶可選選項(xiàng)。這兩個系列在幾個主要方面表現(xiàn)出明顯不同的性能水平,而且兩者的功耗也有很大差異。鏡像抑制是區(qū)分這兩個系列的性能之一。本文探討了鏡像的來源、含義及其對整體系統(tǒng)性能的影響方式。掌握了這些信息,客戶便可做出明智決策并選擇適合應(yīng)用的收發(fā)器。
鏡像抑制基礎(chǔ)知識
AD9361和AD9371系列均使用零中頻(亦稱為zero-IF或ZIF)架構(gòu)實(shí)現(xiàn)極高的集成度并顯著減少系統(tǒng)中頻率相關(guān)組件的數(shù)量。如圖1中的AD9371功能框圖所示,主接收信號路徑和主發(fā)送信號路徑使用一個復(fù)數(shù)混頻器級,在以本振 (LO) 頻率為中心的射頻 (RF) 和以直流為中心的基帶之間進(jìn)行轉(zhuǎn)換。為了更好地了解ZIF收發(fā)器中使用的復(fù)數(shù)混頻器,請參閱本文末尾引用的復(fù)數(shù)RF混頻器相關(guān)文章。1
圖1. RadioVerse AD9371收發(fā)器功能框圖。
盡管憑借這樣的高集成度提供了許多優(yōu)勢,但ZIF無線電器件也帶來了挑戰(zhàn)。復(fù)數(shù)混頻器具有同相 (I) 信號和正交相 (Q) 信號。一旦這些信號的相位或幅度出現(xiàn)任何不匹配,組合上變頻的I信號和Q信號時(shí)會導(dǎo)致求和和消除性能下降。上面引用的文章中描述了這一點(diǎn)。當(dāng)發(fā)送所需信號時(shí),不完美的消除會導(dǎo)致在該信號本振 (LO) 頻率的相反側(cè)出現(xiàn)該信號的反相副本。這一信號副本被稱為鏡像,與其對應(yīng)的所需信號相比,幅度更小。同樣,當(dāng)接收所需信號時(shí),所需信號的反相副本會出現(xiàn)在該信號直流的相反側(cè)。在其他架構(gòu)(例如超外差架構(gòu))中,可以在中間級進(jìn)行鏡像濾波。ZIF架構(gòu)的主要優(yōu)勢是去除了這些濾波器和中間混頻器級,但這需要極佳的I和Q平衡才能將鏡像幅度降低到可接受水平。
圖2中經(jīng)過簡化的接收信號路徑示意圖顯示了這些不匹配與A、fC和φ指定的不匹配發(fā)生的位置。只有一條路徑顯示失配的相位,因?yàn)樗切纬社R像的信號路徑之間的不平衡,而不是信號路徑的絕對增益和相位。因此,在一條路徑中顯示所有不平衡因素,這在數(shù)學(xué)上是正確的。圖2所示的復(fù)數(shù)混頻器也稱為正交混頻器,因?yàn)樘峁┙o混頻器的兩個LO信號彼此正交。
圖2. 經(jīng)過簡化顯示信號損傷的正交接收器信號路徑。
圖3例示了使用單音或連續(xù)波 (CW) 的有用信號以及因此形成的無用CW鏡像。有用信號被下變頻到頻率ωC。如果正交平衡不完美,鏡像將在頻率為-ωC時(shí)出現(xiàn)。鏡像抑制比 (IRR) 是有用信號與無用鏡像信號之差,用分貝 (dB) 表示。降低正交失配的方式被稱為正交誤差校正 (QEC)。
圖3. 單音有用信號和干擾鏡像。
鏡像幅度與增益和相位不匹配有關(guān),關(guān)系式如下所示:
其中:
Δ = 幅度不平衡(用分貝 (dB) 表示,理想值為1)
θ = 相位誤差(用度 (°) 表示,理想值為0)
等式1可得出二維矩陣,因?yàn)閮蓚€輸入變量分別會導(dǎo)致鏡像抑制性能下降。圖4顯示了該矩陣的一部分,其中穿過整個頁面的軸是幅度不平衡,進(jìn)入到頁內(nèi)的軸是相位不平衡,垂直的軸是鏡像抑制(單位:dB)。例如,如果幅度誤差為0.00195且系統(tǒng)需要實(shí)現(xiàn)76 dB的鏡像抑制,則相位誤差必須優(yōu)于0.01286°。即使在單個集成電路器件中,也很難通過控制影響I和Q匹配的所有因素來達(dá)到優(yōu)于50 dB的鏡像抑制。使用AD9371通??蓪?shí)現(xiàn)76 dB的鏡像抑制,這需要運(yùn)用數(shù)字算法來控制模擬路徑變量并在數(shù)字域中應(yīng)用校正。
圖4. 鏡像抑制(單位:dB)與幅度不平衡(單位:dB)和相位不平衡(單位:°)之間的關(guān)系。
鏡像對有用信號的影響
圖5是一張簡化圖,顯示了下變頻之后波形以直流為中心的單載波情形。該波形的示例將是20MHz LTE下行鏈路OFDM信號的單一實(shí)例。如圖5所示,負(fù)側(cè)的一部分有用信號將在正側(cè)具有鏡像,反之亦然。在以直流為中心的單載波情形中,鏡像在有用信號內(nèi)(或其之上)并破壞了有用信號。
圖5. 具有干擾鏡像的單調(diào)制載波。
當(dāng)接收信號并隨后解調(diào)該信號時(shí),將存在若干信號損傷。增加接收信號路徑本底噪聲的熱噪聲就是一個例子。如果鏡像在有用信號內(nèi),也會增加噪聲。如果所有噪聲源的總和過高,則無法對信號進(jìn)行解調(diào)。單載波圖和多載波圖中所示的熱噪底就是一個例子,它作為一個促成因素在這些討論中被忽略了。
當(dāng)使用AD9361的內(nèi)部LO(適用于具有推薦性能的參考時(shí)鐘源)時(shí),AD9361將在無噪底限制時(shí)實(shí)現(xiàn)約-40 dB的EVM。通過RF PLL的相位噪聲將EVM限制在-40 dB。AD9361約50 dBc的鏡像抑制性能意味著在圖5所示的單載波情形中,僅靠鏡像只能將EVM降低約0.5dB。這樣低的EVM降低意味著收發(fā)器通常不是64-QAM(甚至更高)調(diào)制方案的限制因素。在這種單載波情形中,鏡像總是比有用信號小50 dB左右,如圖5所示。
圖6顯示了多載波的例子。圖中的有用信號在下變頻之后發(fā)生了直流失調(diào)。
圖6. 信號1破壞了信號2導(dǎo)致多載波調(diào)制信號具有干擾鏡像。
每個有用信號的鏡像通過直流反射并顯示在頻譜的相反側(cè)。在該示例中,兩個有用信號已經(jīng)被下變頻到相同的直流失調(diào),有用信號1在正側(cè),有用信號2在負(fù)側(cè)。需要注意的是,有用信號2的幅度比有用信號1的幅度低60 dB。兩個載波具有不同幅度在多載波情形下屢見不鮮,如果來自兩個移動電臺的信號行進(jìn)到同一基站時(shí)遇到不同量的路徑損耗,便會發(fā)生上述情況。如果這兩個移動電臺與基站的距離不同,或其中一個移動電臺通過除另一個移動電臺外的對象或在其周圍發(fā)送信號時(shí),可能發(fā)生這種情況。
有用信號2的幅度比有用信號1鏡像的幅度低10dB。這表示有用信號2的信噪比為-10dB。即使使用的是最簡單的調(diào)制技術(shù),也很難實(shí)現(xiàn)解調(diào)。顯然,需要更好的鏡像抑制性能來應(yīng)對這些情況。
圖7顯示相同的情況,但采用AD9371典型的接收鏡像抑制性能。
圖7. 信號1幅度低于信號2幅度導(dǎo)致多載波調(diào)制信號具有干擾鏡像。
有用信號1鏡像的幅度現(xiàn)在比有用信號2的幅度低15 dB。因此信噪比為15dB,足以使用各種調(diào)制方案來解調(diào)有用信號2。
可減少AD9361和AD9371中正交不平衡的技術(shù)
AD9361和AD9371都優(yōu)化了模擬信號和LO路徑,從本質(zhì)上減少了正交不平衡。但如上所述,硅片能夠帶來的好處是有限的。數(shù)字校正可以將鏡像抑制性能提高若干個數(shù)量級。
AD9361接收器正交校準(zhǔn)使用一種算法來分析接收到的整個數(shù)據(jù)頻譜,從而在整個帶寬上創(chuàng)建平均校正。對于單載波用例和相對較窄的帶寬(如20 MHz),該校正在目標(biāo)帶寬上會產(chǎn)生良好的鏡像抑制。這被稱為非頻率相關(guān)算法。該算法對接收到的數(shù)據(jù)執(zhí)行操作并實(shí)時(shí)更新。
AD9371在通過注入測試音進(jìn)行初始化期間以及使用實(shí)際接收到的數(shù)據(jù)進(jìn)行操作期間運(yùn)行接收鏡像抑制校準(zhǔn)。這些更先進(jìn)的校準(zhǔn)可根據(jù)頻率相關(guān)不平衡以及非頻率相關(guān)不平衡進(jìn)行調(diào)整。該算法會實(shí)時(shí)更新。AD9371采用更先進(jìn)的算法和電路實(shí)施校正,在占用的信號帶寬上的性能優(yōu)于AD9361,兩者之差約為25 dB。
本文介紹了使用接收信號路徑的正交不平衡的起源和影響,但ZIF收發(fā)器也必須克服發(fā)射信號路徑中的相同問題。當(dāng)信號路徑或LO路徑不平衡時(shí),發(fā)射器的輸出包括有用信號及其鏡像。
對于發(fā)送信號路徑,AD9361使用初始化校準(zhǔn)來減少優(yōu)化硬件設(shè)計(jì)提供的正交不平衡。初始化校準(zhǔn)使用處于單一頻率且采用單一衰減設(shè)置的CW信號音。該算法通常導(dǎo)致功耗比有用信號低50dB左右的鏡像。另一種寫入方式是-50 dBc(低于載波的分貝值)。在過溫、寬帶寬或不同衰減設(shè)置條件下運(yùn)行可能會影響鏡像水平。
AD9371使用分布在有用信號帶寬上的多個內(nèi)部生成的信號音進(jìn)行初始發(fā)送路徑校準(zhǔn),并確定跨多個發(fā)送衰減設(shè)置的校正系數(shù)。運(yùn)行期間,發(fā)送信號路徑跟蹤校準(zhǔn)使用實(shí)際發(fā)送的數(shù)據(jù)并定期更新校正系數(shù)。AD9371的鏡像抑制性能優(yōu)于AD9361(兩者之差約為15 dB),并且在過溫和衰減條件下以及占用的信號帶寬上可體現(xiàn)這一優(yōu)勢。
具體的簡化示例
到目前為止,根據(jù)本文所涵蓋的全部內(nèi)容,讓我們進(jìn)行思考實(shí)驗(yàn),假設(shè)我們正在構(gòu)建一個系統(tǒng),其中包含一個中心基站和多個客戶端設(shè)備。為了簡化示例,這一假設(shè)的系統(tǒng)在運(yùn)行時(shí)會遠(yuǎn)離建筑物等可導(dǎo)致多路徑的物體?;緦⑴c覆蓋區(qū)域半徑可擴(kuò)展到100米的客戶端設(shè)備進(jìn)行通信,如圖8所示。
圖8. 形象顯示基站和客戶端基站的蜂窩覆蓋區(qū)域。
該系統(tǒng)將在18 MHz的總帶寬上使用多個同時(shí)發(fā)送的6 MHz寬載波。因此在這個系統(tǒng)中,一個客戶端設(shè)備可能非常接近基站,比如0.3米,而最遠(yuǎn)的客戶端設(shè)備與基站之間的距離當(dāng)然就是100米。兩者之間的自由空間路徑損耗差約為50dB。另外假定基站基帶處理器可以測量接收功率,然后通知客戶端將發(fā)射功率增加或減少高達(dá)10 dB。附近的客戶端將減少10dB的發(fā)射功率,而最遠(yuǎn)端的客戶端將以全功率發(fā)射?;镜慕邮展β室虼私档?0 dB,形成40 dB的總體電位差,如圖9所示。顯示的兩個載波表示上述最差情況。為了清楚起見,省略了可以駐留在兩個有用信號之間的可選載波。
圖9. 多載波調(diào)制信號示例。
在這個系統(tǒng)中,假定基站和客戶端使用相同的收發(fā)器。如果使用AD9361,發(fā)送鏡像的幅度可能比有用信號的幅度低50 dB左右。接收器也將增加類似的鏡像功率。兩個正交不平衡組合起來形成比有用信號低47 dB左右的鏡像。
如果AD9371用于鏈路的兩端,則發(fā)送鏡像的幅度通常會下降65 dB,并且接收器會使鏡像比有用信號低75 dB。將這兩者相加,可以得到比有用信號低64.5 dB左右的總鏡像。圖10顯示了兩種結(jié)果。
圖10. 鏡像幅度不同的AD9361和AD9371多載波調(diào)制信號示例。
在這個簡化的示例中,我們只考慮鏡像的影響,而忽略對SNR的影響,如熱噪聲、相位噪聲和非線性度。其中,AD9361可實(shí)現(xiàn)約7dB的SNR,而AD9371則可實(shí)現(xiàn)約24.5dB的SNR。如果在該系統(tǒng)中使用64-QAM等復(fù)雜調(diào)制方案,AD9371可能由于總體系統(tǒng)SNR要求而成為最佳選擇。如果使用QPSK等更簡單的調(diào)制方案,那么選擇AD9361即可,滿足要求綽綽有余。在基帶處理器中使用的技術(shù)將確定解調(diào)信號所需的實(shí)際系統(tǒng)SNR。當(dāng)然,從這個思考實(shí)驗(yàn)轉(zhuǎn)向一個真正的系統(tǒng),必須考慮熱噪聲等以前忽略的影響。
結(jié)論
之前給出的兩個收發(fā)器正交校正算法的圖示和描述集中在接收信號路徑上。由于相同的原因,干擾鏡像的影響也適用于發(fā)送路徑。位于較小載波之上的發(fā)送鏡像對于接收信號的基站來說同樣麻煩。
描述收發(fā)器用以降低鏡像水平的技術(shù)的部分顯示了兩個不同器件系列實(shí)現(xiàn)的量化差異。隨后我們根據(jù)上述具體示例進(jìn)行系統(tǒng)設(shè)計(jì),并將設(shè)計(jì)決策范圍縮小到一些簡短的與解調(diào)接收信號所需的SNR相關(guān)問題。雖然AD9371系列的鏡像性能總是優(yōu)于AD9361系列,但是AD9371系列的功耗更高并且使用高速串行接口,這就要求系統(tǒng)工程師能夠查看設(shè)計(jì)的各個方面,并為其應(yīng)用找到最佳解決方案。
本文轉(zhuǎn)載自亞德諾半導(dǎo)體。
推薦閱讀:
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 一文看懂電壓轉(zhuǎn)換的級聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計(jì)簡介
- 如何通過基本描述找到需要的電容?
技術(shù)文章更多>>
- 瑞典名企Roxtec助力構(gòu)建安全防線
- 貿(mào)澤與Cinch聯(lián)手發(fā)布全新電子書深入探討惡劣環(huán)境中的連接應(yīng)用
- 第二十二屆中國國際軟件合作洽談會在成都順利舉行
- 混合信號示波器的原理和應(yīng)用
- 功率器件熱設(shè)計(jì)基礎(chǔ)(十)——功率半導(dǎo)體器件的結(jié)構(gòu)函數(shù)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達(dá)控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢想電子
模擬鎖相環(huán)
耐壓測試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池