【導(dǎo)讀】近年來,為了更好地實現(xiàn)自然資源可持續(xù)利用,需要更多節(jié)能產(chǎn)品,因此,關(guān)于焊機能效的強制性規(guī)定應(yīng)運而生。經(jīng)改進(jìn)的碳化硅CoolSiC? MOSFET 1200V采用基于.XT擴散焊技術(shù)的TO-247封裝,其非常規(guī)封裝和熱設(shè)計方法通過改良設(shè)計提高了能效和功率密度。
逆變焊機通常是通過IGBT功率模塊解決方案設(shè)計來實現(xiàn)更高輸出功率,從而幫助降低節(jié)能焊機的成本、重量和尺寸[1]。
在焊機行業(yè),諸如提高效率、降低成本和增強便攜性(即,縮小尺寸并減輕重量)等趨勢一直是促進(jìn)持續(xù)發(fā)展的推動力。譬如,多個標(biāo)準(zhǔn)法規(guī)已經(jīng)或即將強制規(guī)定焊機的電源效率達(dá)到特定水平。其中一個例子是,2023年1月1日生效的針對焊接設(shè)備的歐盟(EU)最新法規(guī)[2]。因此,對于使用功率模塊作為典型解決方案的10kW至40kW中等功率焊機,順應(yīng)這些趨勢現(xiàn)在已變得非常困難。
英飛凌CoolSiC? MOSFET 1200V采用基于.XT擴散焊技術(shù)的TO-247封裝,大大提升了器件的熱性能和可靠性。結(jié)合特定的冷卻設(shè)計(“為了增加散熱,將器件單管直接貼裝在散熱片上,而未進(jìn)行任何電氣隔離”[3]),它提供了更出色的器件單管解決方案(圖1)。它可實現(xiàn)更高輸出功率,提高效率和功率密度,并降低中功率焊機的成本。
圖1:采用未與散熱片隔離的1200V CoolSiC? MOSFET單管的焊機電源
采用.XT擴散焊技術(shù)的CoolSiC? MOSFET單管
增強型CoolSiC? MOSFET 1200V充分利用了基于英飛凌.XT擴散焊技術(shù)的改良型TO-247封裝。這項技術(shù)采用先進(jìn)的擴散焊工藝。如[4]中所作詳細(xì)討論,這種封裝技術(shù)的主要優(yōu)點是大幅減小焊接層的厚度(圖2),其中,特定的金屬合金結(jié)合可顯著提高導(dǎo)熱率。這一特性降低了器件的結(jié)-殼熱阻(Rthj-case)和熱阻抗(Zthj-case)。
這種焊接工藝可避免芯片偏斜和焊料溢出,并實現(xiàn)幾乎無空隙的焊接界面,從而提高器件的可靠性。此外,它提高了器件在熱-機械應(yīng)力下的性能,這意味著器件在主動和被動熱循環(huán)測試條件下具有更出色的性能??偟膩碚f,采用基于.XT擴散焊技術(shù)的TO-247封裝的CoolSiC? MOSFET 1200V,可使焊機電源設(shè)計實現(xiàn)更好的熱性能和可靠性。
圖2:英飛凌.XT擴散焊技術(shù)較之于常規(guī)軟焊工藝
采用CoolSiC? MOSFET器件單管的500A逆變焊機功率變換器設(shè)計
一家大型制造商的焊機,其獨特的500A功率變換器設(shè)計展示基于.XT擴散焊技術(shù)TO-247封裝的CoolSiC? MOSFET 1200V,用于中等功率焊機的改良型解決方案。它使用了前文探討的冷卻概念,如圖1所示,器件貼裝在散熱片上而不進(jìn)行電氣隔離。此外,為了證實其具備更好的性能,在相同的測試條件下,將其與主要競爭對手的SiC MOSFET進(jìn)行了對比。
焊機電源由一個三相輸入,全橋拓?fù)淠孀兤鳂?gòu)成,使用了英飛凌提供的4顆TO-247 4引腳封裝的基于.XT互連技術(shù)(IMZA120R020M1H)的20m? 1200V CoolSiC? MOSFET。表1列出了逆變焊接的基本技術(shù)規(guī)格:
表1:焊機電源逆變器基本技術(shù)規(guī)格
請注意,相比于在10kHz至20kHz開關(guān)頻率下工作的中等功率焊機所用的典型IGBT模塊解決方案,SiC MOSFET的超高開關(guān)速度能夠顯著提高典型工作開關(guān)頻率。這有助于縮小磁性元件和無源器件的尺寸,從而縮小逆變器尺寸。
此外,為了滿足表1所列要求,選擇了適當(dāng)?shù)纳崞涂諝饬?,以提供適當(dāng)?shù)臒釙r間常數(shù)。所有散熱片均在大約5分鐘后達(dá)到熱穩(wěn)態(tài)條件,冷卻系統(tǒng)設(shè)計亦隨之達(dá)到熱穩(wěn)態(tài)條件(圖3)。這樣一來,在最大運行要求的60%焊接占空比內(nèi),SiC MOSFET器件即已達(dá)到熱穩(wěn)態(tài)條件。
圖3:散熱器的熱穩(wěn)態(tài)條件和散熱能力
電源逆變器測試條件如下:
● 輸出功率:408A、47.7V、~19.5kW。目標(biāo)輸出功率:20kW、500A、40V
● 暫載率:60%,6分鐘開、4分鐘關(guān)
● 逆變器DC母線電壓:530 VDC
● 開關(guān)頻率:50kHz
● VGS(20m? CoolSiC? MOSFET):18/-3V
● VGS(競品20m? SiC MOSFET):20/-4V
● 上橋臂散熱片Rth:~0.36K/W
● 下橋臂散熱片Rth:~0.22K/W
● 導(dǎo)熱膏導(dǎo)熱率:6.0W/mK
● 貼裝夾持力:60N(13.5磅)
● 環(huán)境溫度:室溫
● 強制空氣冷卻
● RCL負(fù)載
正如預(yù)期的那樣,由于適當(dāng)?shù)臇艠O驅(qū)動器、RC緩沖器和PCB布局設(shè)計,英飛凌CoolSiC? MOSFET與競品SiC MOSFET之間沒有顯著差異,二者都表現(xiàn)出相似的波形性能(圖4)。
圖4:焊機電源逆變器工作期間的典型SiC MOSFET波形
然而,散熱和功率損耗測試結(jié)果則表明,CoolSiC? MOSFET的性能更加出色。溫度曲線圖(圖5)顯示,20m? IMZA120R020M1H CoolSiC? MOSFET的性能明顯優(yōu)于競品器件。平均而言,相比于競品器件,CoolSiC? MOSFET的散熱片溫度降低了約6%,估算的功率損耗降低了17%,殼溫降低了14%。
此外,CoolSiC? MOSFET在運行5鐘后即達(dá)到熱穩(wěn)態(tài)條件,符合基于冷卻設(shè)計數(shù)據(jù)的預(yù)計。另一方面,競品SiC MOSFET一直未達(dá)到熱穩(wěn)態(tài)條件,這意味著其功率損耗在系統(tǒng)運行6分鐘后仍在增加。
圖5:20m? 1200V SiC MOSFET在60%暫載率工作狀態(tài)下的散熱和功率損耗——英飛凌CoolSiC? MOSFET IMZA120R020M1H較之于主要競爭對手的器件
最后,哪怕考慮到最高40°C環(huán)境溫度,這種SiC MOSFET單管解決方案亦可輕松滿足最高80°C散熱片溫度要求。
總而言之,測試結(jié)果證實并證明,CoolSiC? MOSFET單管解決方案通過采用直接將器件貼裝在散熱片上而不進(jìn)行電氣隔離的冷卻概念,可助力實現(xiàn)通常選用功率模塊解決方案的20kW及以上中功率焊機的逆變器設(shè)計。
結(jié)語
測試證實,采用基于.XT擴散焊技術(shù)的TO-247封裝的CoolSiC? MOSFET 1200V,結(jié)合知名非常規(guī)冷卻設(shè)計,實現(xiàn)更出色的焊機電源。這種設(shè)計大大提高了散熱性能,實現(xiàn)比功率模塊解決方案更高輸出功率水平。英飛凌.XT互連技術(shù)的優(yōu)點,有助于提高散熱性能,從而提高逆變器的可靠性和使用壽命。文中提出的單管解決方案能夠?qū)崿F(xiàn)更高效率和功率密度,幫助滿足對更高能效焊機的需求,同時順應(yīng)焊機行業(yè)發(fā)展趨勢,如降低成本、重量和尺寸。
參考資料
[1] 本文是作者(Jorge Cerezo)在紐倫堡PCIM Europe 2022發(fā)表的論文《使用基于.XT互連技術(shù)的1200 V CoolSiC? MOSFET單管提高焊機功率效率》的更新版本。https://pcim.mesago.com/nuernberg/en.html
[2] 按照歐洲議會和理事會指令2009/125/EC的要求,歐盟委員會(EU)2019/1784于2019年10月1日規(guī)定了針對焊接設(shè)備的生態(tài)設(shè)計要求。
[3] 《TO-247PLUS IGBT單管助力提高焊接設(shè)備功率密度》,AN2019-10,英飛凌科技股份公司。
[4] M. Holz、J. Hilsenbeck、R. Otremba、A. Heinrich、P. Türkes、R. Rupp等合著《SiC功率器件:使用擴散焊技術(shù)改進(jìn)產(chǎn)品》,Materials Science Forum,第615-617卷(2009年)第613-616頁。
來源:英飛凌科技高級應(yīng)用工程師Jorge Cerezo
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。
推薦閱讀:
注意!設(shè)計半橋 LLC 諧振轉(zhuǎn)換器,你得注意這些
用于車載充電器應(yīng)用的1200 V SiC MOSFET模塊使用指南