結(jié)合計(jì)算機(jī)與繼電器系統(tǒng)的優(yōu)點(diǎn):基于PLC的發(fā)動(dòng)機(jī)起動(dòng)控制系統(tǒng)
發(fā)布時(shí)間:2016-06-12 責(zé)任編輯:susan
【導(dǎo)讀】通過將可編程序控制器應(yīng)用于發(fā)動(dòng)機(jī)起動(dòng)程序控制系統(tǒng)中,可以極大地改善控制系統(tǒng)的性能,不僅使系統(tǒng)的控制精度提高、抗干擾能力增強(qiáng),而且使系統(tǒng)還具有體積小、重量輕、耗電省、通用性強(qiáng)等優(yōu)點(diǎn)。
傳統(tǒng)的軍民用飛機(jī)的發(fā)動(dòng)機(jī)起動(dòng)程序控制系統(tǒng)普遍采用機(jī)電相結(jié)合的方式,由于采用機(jī)電式的定時(shí)機(jī)構(gòu)去控制相關(guān)的繼電器、接觸器以實(shí)現(xiàn)發(fā)動(dòng)機(jī)起動(dòng)程序控制,不僅使控制系統(tǒng)的體積增大、重量加重、耗電多、可靠性差,而且采用固定接線的硬件設(shè)計(jì)使系統(tǒng)不具有通用性,更突出的問題是由于機(jī)械磨損還會(huì)使系統(tǒng)的控制精度逐漸降低。由于PLC把計(jì)算機(jī)的編程靈活、功能齊全、應(yīng)用面廣等優(yōu)點(diǎn)與繼電器系統(tǒng)的控制簡(jiǎn)單、使用方便、抗干擾能力強(qiáng)等優(yōu)點(diǎn)結(jié)合起來,而其本身又具有體積小、重量輕、耗電省等優(yōu)點(diǎn),因此,用PLC取代機(jī)電式的定時(shí)機(jī)構(gòu)來完成發(fā)動(dòng)機(jī)的起動(dòng)程序控制,將極大地改善發(fā)動(dòng)機(jī)起動(dòng)控制系統(tǒng)的性能。
一.發(fā)動(dòng)機(jī)起動(dòng)程序控制原理
發(fā)動(dòng)機(jī)由靜止?fàn)顟B(tài)轉(zhuǎn)變到能自行發(fā)出功率的最低轉(zhuǎn)速狀態(tài)叫發(fā)動(dòng)機(jī)的起動(dòng)。為了使發(fā)動(dòng)機(jī)渦輪(轉(zhuǎn)子)能由靜止?fàn)顟B(tài)柔和地、無撞擊地轉(zhuǎn)動(dòng)起來,定時(shí)機(jī)構(gòu)必須對(duì)起動(dòng)機(jī)的起動(dòng)轉(zhuǎn)矩進(jìn)行分級(jí)調(diào)節(jié),使起動(dòng)機(jī)的轉(zhuǎn)矩逐級(jí)增大,并適時(shí)地控制對(duì)發(fā)動(dòng)機(jī)燃燒室進(jìn)行噴油點(diǎn)火。某型飛機(jī)發(fā)動(dòng)機(jī)的起動(dòng)程序控制原理如圖1所示。
圖1.發(fā)動(dòng)機(jī)的起動(dòng)程序控制原理
定時(shí)機(jī)構(gòu)的程序控制把起動(dòng)機(jī)的工作過程劃分為以下幾個(gè)階段:
第一階段:即按下起動(dòng)按鈕后的1S~3.6S內(nèi),使起動(dòng)機(jī)以復(fù)勵(lì)狀態(tài)且電樞串聯(lián)起動(dòng)降壓電阻工作,起動(dòng)機(jī)轉(zhuǎn)矩被限制在很小的范圍內(nèi),因此,起動(dòng)機(jī)能柔和地通過
傳動(dòng)裝置帶動(dòng)發(fā)動(dòng)機(jī)渦輪旋轉(zhuǎn)。
第二階段:即按下起動(dòng)按鈕后的3.6S~9S內(nèi),短接起動(dòng)降壓電阻,起動(dòng)機(jī)兩端電壓升高,起動(dòng)機(jī)轉(zhuǎn)矩迅速增大,隨之渦輪轉(zhuǎn)速迅速上升。
第三階段:即按下起動(dòng)按鈕后的9S~15S內(nèi),起動(dòng)電源車內(nèi)的兩組電瓶由并聯(lián)轉(zhuǎn)為串聯(lián),起動(dòng)機(jī)兩端的電壓由28V升高到56V,起動(dòng)機(jī)轉(zhuǎn)矩急劇增大,從而使渦輪轉(zhuǎn)速急劇上升。
第四階段:即按下起動(dòng)按鈕后的15S~22S內(nèi),起動(dòng)機(jī)并勵(lì)線圈串聯(lián)降壓電阻使起動(dòng)機(jī)的激磁磁通減小,反電勢(shì)減小,電樞電流增大,轉(zhuǎn)矩又一次增大,從而使渦輪進(jìn)一步加速。
二.PLC控制系統(tǒng)
1.系統(tǒng)硬件設(shè)計(jì)及I/O地址的分配
圖2.發(fā)動(dòng)機(jī)起動(dòng)程序電氣控制線路圖
在發(fā)動(dòng)機(jī)起動(dòng)機(jī)程序控制系統(tǒng)中PLC采用三菱FX2系列中的FX2N-48MR-001型,該系列PLC可靠性高,抗干擾能力強(qiáng),適合于在軍民用飛機(jī)上使用,且配置靈活,性價(jià)比高[1]。從圖1 中可以看出:為了實(shí)現(xiàn)起動(dòng)機(jī)的四個(gè)階段控制,自按下起動(dòng)按鈕起,接觸器KM1、KM2的吸合時(shí)間均為9S~21S,KM3為3.6S~22S,KM4為1S~3.6S,KM5為1S~15S,KM6為15S~22S,根據(jù)系統(tǒng)的控制要求,PLC控制系統(tǒng)需引入與停止按鈕和起動(dòng)按鈕分別相對(duì)應(yīng)的兩個(gè)輸入繼電器、與四個(gè)接觸器和兩個(gè)繼電器分別相對(duì)應(yīng)的六個(gè)輸出繼電器、以及控制上述四個(gè)接觸器和兩個(gè)繼電器分時(shí)段工作的四個(gè)通電延時(shí)時(shí)間繼電器和兩個(gè)斷電延時(shí)時(shí)間繼電器。發(fā)動(dòng)機(jī)起動(dòng)程序電氣控制線路圖和PLC的I/O地址編碼表分別如圖2、表1所示。
表1.I/O地址編碼表
2.軟件設(shè)計(jì)
圖3.控制系統(tǒng)梯形圖
軟件設(shè)計(jì)采用使用最廣泛的PLC梯形圖圖形編程語言。梯形圖與繼電器控制系統(tǒng)的電路圖很相似,直觀易懂,很容易被熟悉電器控制的電氣人員掌握,特別適用于開關(guān)量邏輯控制[2]。該控制系統(tǒng)梯形圖如圖3所示。
圖3中:X0、X1為輸入繼電器;Y1、Y2、Y3、Y4、Y5、Y6為輸出繼電器;T1、T2、T3、T4為通電延時(shí)時(shí)間繼電器;T5、T6為斷電延時(shí)時(shí)間繼電器;M0、M1、M2、M3、M4為中間繼電器。
三.結(jié)束語
通過將可編程序控制器應(yīng)用于發(fā)動(dòng)機(jī)起動(dòng)程序控制系統(tǒng)中,可以極大地改善控制系統(tǒng)的性能,不僅使系統(tǒng)的控制精度提高、抗干擾能力增強(qiáng),而且使系統(tǒng)還具有體積小、重量輕、耗電省、通用性強(qiáng)等優(yōu)點(diǎn)。
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動(dòng)化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計(jì)簡(jiǎn)介
- 如何通過基本描述找到需要的電容?
技術(shù)文章更多>>
- 聯(lián)發(fā)科與NVIDIA合作 為NVIDIA 個(gè)人AI超級(jí)計(jì)算機(jī)設(shè)計(jì)NVIDIA GB10超級(jí)芯片
- 國產(chǎn)工業(yè)核心零部件崛起背后,華丞電子的智慧與突破
- 歐盟新規(guī)實(shí)施:新車必須安裝
- 破局時(shí)效,跨越速運(yùn)領(lǐng)航零擔(dān)快運(yùn)新征途
- 瑞典名企Roxtec助力構(gòu)建安全防線
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
云計(jì)算
云母電容
真空三極管
振蕩器
振蕩線圈
振動(dòng)器
振動(dòng)設(shè)備
震動(dòng)馬達(dá)
整流變壓器
整流二極管
整流濾波
直流電機(jī)
智能抄表
智能電表
智能電網(wǎng)
智能家居
智能交通
智能手機(jī)
中電華星
中電器材
中功率管
中間繼電器
周立功單片機(jī)
轉(zhuǎn)換開關(guān)
自耦變壓器
自耦調(diào)壓器
阻尼三極管
組合開關(guān)