關(guān)于高頻推挽逆變車載開(kāi)關(guān)電源的電路設(shè)計(jì)
發(fā)布時(shí)間:2015-05-22 責(zé)任編輯:xueqi
【導(dǎo)讀】推挽逆變電路以其結(jié)構(gòu)簡(jiǎn)單、變壓器磁芯利用率高等優(yōu)點(diǎn)得到了廣泛應(yīng)用。因此,本文提出了一種推挽逆變車載開(kāi)關(guān)電源電路設(shè)計(jì)方案,可使輸出電壓穩(wěn)定在220V并具有一定的輸出硬度,效率達(dá)到80%,特別適用于低壓大電流輸入的中小功率場(chǎng)合。
引言
隨著現(xiàn)代汽車用電設(shè)備種類的增多,功率等級(jí)的增加,所需要電源的型式越來(lái)越多,包括交流電源和直流電源。這些電源均需要采用開(kāi)關(guān)變換器將蓄電池提供的+12VDC或+24VDC的直流電壓經(jīng)過(guò)DC-DC變換器提升為+220VDC或+240VDC,后級(jí)再經(jīng)過(guò)DC-AC變換器轉(zhuǎn)換為工頻交流電源或變頻調(diào)壓電源。對(duì)于前級(jí)DC-DC變換器,又包括高頻DC-AC逆變部分、高頻變壓器和AC-DC整流部分,不同的組合適應(yīng)不同的輸出功率等級(jí),變換性能也有所不同。
推挽逆變電路以其結(jié)構(gòu)簡(jiǎn)單、變壓器磁芯利用率高等優(yōu)點(diǎn)得到了廣泛應(yīng)用,尤其是在低壓大電流輸入的中小功率場(chǎng)合;同時(shí)全橋整流電路也具有電壓利用率高、支持輸出功率較高等特點(diǎn)。鑒于此,本文提出了一種推挽逆變車載開(kāi)關(guān)電源電路設(shè)計(jì)方案。該方案在推挽逆變-高頻變壓器-全橋整流設(shè)計(jì)的基礎(chǔ)上,進(jìn)一步設(shè)計(jì)了24VDC輸入-220VDC輸出、額定輸出功率600W的DC-DC變換器,并采用AP法設(shè)計(jì)相應(yīng)的推挽變壓器。
1推挽逆變的工作原理
圖1給出了推挽逆變-高頻變壓-全橋整流DC-DC變換器的基本電路拓?fù)洹Mㄟ^(guò)控制兩個(gè)開(kāi)關(guān)管S1和S2以相同的開(kāi)關(guān)頻率交替導(dǎo)通,且每個(gè)開(kāi)關(guān)管的占空比d均小于50%,留出一定死區(qū)時(shí)間以避免S1和S2同時(shí)導(dǎo)通。由前級(jí)推挽逆變將輸入直流低電壓逆變?yōu)榻涣鞲哳l低電壓,送至高頻變壓器原邊,并通過(guò)變壓器耦合,在副邊得到交流高頻高電壓,再經(jīng)過(guò)由反向快速恢復(fù)二極管FRD構(gòu)成的全橋整流、濾波后得到所期望的直流高電壓。由于開(kāi)關(guān)管可承受的反壓最小為兩倍的輸入電壓,即2UI,而電流則是額定電流,所以,推挽電路一般用在輸入電壓較低的中小功率場(chǎng)合。
圖1:方案設(shè)計(jì)總體拓?fù)潆娐穲D
當(dāng)S1開(kāi)通時(shí),其漏源電壓uDS1只是一個(gè)開(kāi)關(guān)管的導(dǎo)通壓降,在理想情況下可假定uDS1=0,而此時(shí)由于在繞組中會(huì)產(chǎn)生一個(gè)感應(yīng)電壓,并且根據(jù)變壓器初級(jí)繞組的同名端關(guān)系,該感應(yīng)電壓也會(huì)疊加到關(guān)斷的S2上,從而使S2在關(guān)斷時(shí)承受的電壓是輸入電壓與感應(yīng)電壓之和約為2UI.在實(shí)際中,變壓器的漏感會(huì)產(chǎn)生很大的尖峰電壓加在S2兩端,從而引起大的關(guān)斷損耗,變換器的效率因受變壓器漏感的限制,不是很高。在S1和S2的漏極之間接上RC緩沖電路,也稱為吸收電路,用來(lái)抑制尖峰電壓的產(chǎn)生。并且為了給能量回饋提供反饋回路,在S1和S2兩端都反并聯(lián)上續(xù)流二極管FWD.
2開(kāi)關(guān)變壓器的設(shè)計(jì)
采用面積乘積(AP)法進(jìn)行設(shè)計(jì)。對(duì)于推挽逆變工作開(kāi)關(guān)電源,原邊供電電壓UI=24V,副邊為全橋整流電路,期望輸出電壓UO=220V,輸出電流IO=3A,開(kāi)關(guān)頻率fs=25kHz,初定變壓器效率η=0.9,工作磁通密度Bw=0.3T.
(1)計(jì)算總視在功率PT.設(shè)反向快速恢復(fù)二極管FRD的壓降:VDF=0.6*2=1.2V
3推挽逆變的問(wèn)題分析
3.1能量回饋
主電路導(dǎo)通期間,原邊電流隨時(shí)間而增加,導(dǎo)通時(shí)間由驅(qū)動(dòng)電路決定。
圖2:推挽逆變能量回饋等效電路
圖2(a)為S1導(dǎo)通、S2關(guān)斷時(shí)的等效電路,圖中箭頭為電流流向,從電源UI正極流出,經(jīng)過(guò)S1流入電源UI負(fù)極,即地,此時(shí)FWD1不導(dǎo)通;當(dāng)S1關(guān)斷時(shí),S2未導(dǎo)通之前,由于原邊能量的儲(chǔ)存和漏電感的原因,S1的端電壓將升高,并通過(guò)變壓器耦合使得S2的端電壓下降,此時(shí)與S2并聯(lián)的能量恢復(fù)二極管FWD2還未導(dǎo)通,電路中并沒(méi)有電流流過(guò),直到在變壓器原邊繞組上產(chǎn)生上正下負(fù)的感生電壓。如圖2(b);FWD2導(dǎo)通,把反激能量反饋到電源中去,如圖2(c),箭頭指向?yàn)槟芰炕仞伒姆较?。圖3所示為AP法設(shè)計(jì)開(kāi)關(guān)變壓器電路理想工作波形。
圖3:開(kāi)關(guān)變壓器電路理想工作波形圖
3.2各點(diǎn)波形分析
當(dāng)某一PWN信號(hào)的下降沿來(lái)臨時(shí),其控制的開(kāi)關(guān)元件關(guān)斷,由于原邊能量的儲(chǔ)存和漏電感的原因,漏極產(chǎn)生沖擊電壓,大于2UI,因?yàn)榧尤肓薘C緩沖電路,使其最終穩(wěn)定在2UI附近。
當(dāng)S1的PWN信號(hào)下降沿來(lái)臨,S1關(guān)斷,漏極產(chǎn)生較高的沖擊電壓,并使得與S2并聯(lián)的反饋能量二極管FWD2導(dǎo)通,形成能量回饋回路,此時(shí)S2漏極產(chǎn)生較高的沖擊電流,見(jiàn)圖4.
圖4:S2漏極產(chǎn)生較高的沖擊電流圖
4實(shí)驗(yàn)與分析
4.1原理設(shè)計(jì)
圖5為簡(jiǎn)化后的主電路。輸入24V直流電壓,經(jīng)過(guò)大電容濾波后,接到推挽變壓器原邊的中間抽頭。變壓器原邊另外兩個(gè)抽頭分別接兩個(gè)全控型開(kāi)關(guān)器件IGBT,并在此之間加入RC吸收電路,構(gòu)成推挽逆變電路。推挽變壓器輸出端經(jīng)全橋整流,大電容濾波得到220V直流電壓。并通過(guò)分壓支路得到反饋電壓信號(hào)UOUT.
圖5:推挽DC-DC變換器主電路圖
以CA3524芯片為核心,構(gòu)成控制電路。通過(guò)調(diào)節(jié)6、7管腳間的電阻和電容值來(lái)調(diào)節(jié)全控型開(kāi)關(guān)器件的開(kāi)關(guān)頻率。12、13管腳輸出PWM脈沖信號(hào),并通過(guò)驅(qū)動(dòng)電路,分別交替控制兩個(gè)全控型開(kāi)關(guān)器件。電壓反饋信號(hào)輸入芯片的1管腳,通過(guò)調(diào)節(jié)電位器P2給2管腳輸入電壓反饋信號(hào)的參考電壓,并與9管腳COM端連同CA3524內(nèi)部運(yùn)放一起構(gòu)成PI調(diào)節(jié)器,調(diào)節(jié)PWM脈沖占空比,以達(dá)到穩(wěn)定輸出電壓220V的目的。
4.2結(jié)果與分析
實(shí)驗(yàn)結(jié)果表面,輸出電壓穩(wěn)定在220V,紋波電壓較小。最大輸出功率能達(dá)到近600W,系統(tǒng)效率基本穩(wěn)定在80%,達(dá)到預(yù)期效果。如下表1所示。
其中,由于IGBT效率損耗較大導(dǎo)致系統(tǒng)效率偏低,考慮如果采用損耗較小的MOSFET,系統(tǒng)效率會(huì)至少上升10%~15%.
注意事項(xiàng):
(1)變壓器初級(jí)繞組在正、反兩個(gè)方向激勵(lì)時(shí),由于相應(yīng)的伏秒積不相等,會(huì)使磁芯的工作磁化曲線偏離原點(diǎn),這一偏磁現(xiàn)象與開(kāi)關(guān)管的選擇有關(guān),原因是開(kāi)關(guān)管反向恢復(fù)時(shí)間的不同>可導(dǎo)致伏秒積的不同。
(2)實(shí)驗(yàn)中,隨著輸入電壓的微幅增高,系統(tǒng)損耗隨之增大,主要原因是變壓器磁芯產(chǎn)生較大的渦流損耗,系統(tǒng)效率有所下降。減小渦流損耗的措施主要有:減小感應(yīng)電勢(shì),如采用鐵粉芯材料;增加鐵心的電阻率,如采用鐵氧體材料;加長(zhǎng)渦流所經(jīng)的路徑,如采用硅鋼片或非晶帶。
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動(dòng)化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計(jì)簡(jiǎn)介
- 如何通過(guò)基本描述找到需要的電容?
技術(shù)文章更多>>
- 瑞典名企Roxtec助力構(gòu)建安全防線
- 貿(mào)澤與Cinch聯(lián)手發(fā)布全新電子書(shū)深入探討惡劣環(huán)境中的連接應(yīng)用
- 第二十二屆中國(guó)國(guó)際軟件合作洽談會(huì)在成都順利舉行
- 混合信號(hào)示波器的原理和應(yīng)用
- 功率器件熱設(shè)計(jì)基礎(chǔ)(十)——功率半導(dǎo)體器件的結(jié)構(gòu)函數(shù)
技術(shù)白皮書(shū)下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖
電路圖符號(hào)
電路圖知識(shí)
電腦OA
電腦電源
電腦自動(dòng)斷電
電能表接線
電容觸控屏
電容器
電容器單位