【導(dǎo)讀】在一些使用 PGA 的應(yīng)用中,關(guān)鍵的 DC 規(guī)范為 VOS、增益精度與偏移、噪聲以及靜態(tài)功耗。本文介紹一款特殊的放大器結(jié)構(gòu),它具有經(jīng)過修整的內(nèi)部電阻器網(wǎng)絡(luò),擁有比采用離散式電阻器組件的放大器更高的性能。
可編程增益放大器 (PGA) 是特殊的放大器結(jié)構(gòu)(請(qǐng)參見圖 1),具有經(jīng)過修整的內(nèi)部電阻器網(wǎng)絡(luò),擁有比采用離散式電阻器組件的放大器更高的性能。正如圖 1 中 PGA 傳輸函數(shù)所顯示那樣,PGA 輸出的絕對(duì)誤差與內(nèi)部偏移電壓(VOS)、增益精度和 VREF 絕對(duì)精度有關(guān)。
圖1:相應(yīng)傳輸函數(shù)的PGA 配置舉例
在一些使用 PGA 的應(yīng)用中,關(guān)鍵的 DC 規(guī)范為 VOS、增益精度與偏移、噪聲以及靜態(tài)功耗。如果參考引腳 VREF 不以運(yùn)算放大器緩沖電路驅(qū)動(dòng),則 PGA 傳輸函數(shù)的精度會(huì)受到極大影響。另外,從 AC 的角度來看,一個(gè)常見的難題是維持頻率下的增益精度,其會(huì)受到參考引腳電壓 VREF 以及對(duì)它起到緩沖作用的運(yùn)算放大器的影響。
考慮到帶寬、AOL(ω)、RO(ω) 和運(yùn)算放大器緩沖電路的反饋系數(shù) (β)(請(qǐng)參見圖 2)大小的情況下,我們便可以更好地理解運(yùn)算放大器效應(yīng)對(duì) VREF 所產(chǎn)生的影響。
圖2:Vref 緩沖分壓器電壓
由于緩沖器本身 β = 1,因此輸出電壓 VREF 等于 AOLVIN。VREF 流入緩沖放大器反相輸入端的輸入偏置電流,決定了負(fù)載電流的大小程度。這一點(diǎn)非常重要,因?yàn)樨?fù)載電流的大小會(huì)調(diào)節(jié)環(huán)路增益 (AOLβ) 和閉環(huán)輸出阻抗 ROUT。
圖2 顯示了 VREF 緩沖器的閉環(huán)內(nèi)部電路:Rout、Ro 和 AOL 之間的重要關(guān)系如方程式 1 所示:
方程式1
總之,隨著頻率不斷增加,運(yùn)算放大器通過減小 AOL、增加 Rout 以及延長(zhǎng)穩(wěn)定時(shí)間來保持固定輸出電壓和低阻抗的能力下降。這會(huì)影響 PGA 增益誤差的精度。
為了方便說明,請(qǐng)思考圖 3 所示單端 PGA 之例。輸入信號(hào) VIN 有其 DC 組成部分 (2.5V),而 AC 信號(hào)為一個(gè) 200 mVpp、5 kHz 正弦波:
圖3:緩沖器單端 PGA
圖4:以 TINA Spice 中的“萬(wàn)用表”功能對(duì)圖5 進(jìn)行分析
我們可以利用 TINA Spice 中的“萬(wàn)用表”功能(請(qǐng)參見圖 4),獲得輸入電壓對(duì)輸出電壓的 RMS 值,并用其計(jì)算總輸出誤差,具體計(jì)算方法如方程式 2 和 3:
方程式 2
方程式 3
例如,微功耗精密運(yùn)算放大器 OPA333 便擁有 ~350 kHz 的增益帶寬 (GBW) 積。因此,在 5 kHz下,閉環(huán)特性會(huì)下降到造成第二個(gè)運(yùn)算放大器(如OPA376)輸出端產(chǎn)生 0.08% 誤差的程度。若使用一個(gè)更高 GBW 的放大器(如:另一個(gè)精密運(yùn)算放大器)便可減小這種誤差。
通過在 TINA SPICE 中繪制出傳輸函數(shù) (VOUT/VIN) 與頻率曲線圖的關(guān)系圖,我們可以直觀地看到改變阻抗頻率的效果(請(qǐng)參見圖 5)。請(qǐng)注意,相比 OPA333, OPA376 當(dāng)作緩沖器時(shí),增益與頻率的關(guān)系更加恒定:
圖5:OPA333 和 OPA376 緩沖器比較圖
結(jié)果表明,把一個(gè)帶寬較高的運(yùn)算放大器(例如:OPA376 等)用作 VREF 緩沖放大器,可明顯改善總輸出誤差。