中心議題:
- 交錯(cuò)式DC/DC轉(zhuǎn)換器改進(jìn)方案
解決方案:
- 提高開(kāi)關(guān)電源重載效率
- 通過(guò)控制相數(shù)實(shí)時(shí)優(yōu)化效率
- 通過(guò)DCM操作實(shí)時(shí)優(yōu)化效率
- 考慮功率級(jí)和控制器的設(shè)計(jì)
與傳統(tǒng)的并聯(lián)輸出級(jí)晶體管相比,交錯(cuò)式DC/DC轉(zhuǎn)換器拓?fù)浣Y(jié)構(gòu)能夠?qū)崿F(xiàn)更高效率的設(shè)計(jì),且仍然有改進(jìn)的余地。在交錯(cuò)式操作中,許多微型轉(zhuǎn)換器單元(或相位)并聯(lián)放置。理想情況下,有源相移控制電路將功率均勻分配于各相,而且這種方法能夠消除輸出端的電流紋波,并提高有效紋波頻率,從而降低對(duì)輸出濾波器電容的要求。交錯(cuò)方法還能顯著降低對(duì)輸入電感和電容的要求。
然而,這種方法有幾個(gè)缺點(diǎn)。缺點(diǎn)之一是需要權(quán)衡轉(zhuǎn)換器的滿載效率與輕載效率。在晶體管級(jí)并聯(lián)的情況下,導(dǎo)通損耗減小,但開(kāi)關(guān)損耗增大。滿載時(shí)以導(dǎo)通損耗為主,不存在問(wèn)題。但輕載時(shí)相反,開(kāi)關(guān)損耗處于支配地位。此外,各相之間的均流也是一個(gè)麻煩的問(wèn)題,一般由有源控制電路來(lái)處理此問(wèn)題(如果沒(méi)有該電路,并聯(lián)各相之間的微小器件不匹配就會(huì)造成巨大的相位電流不平衡),有些方法優(yōu)于其它方法。
圖1:雙相交錯(cuò)式雙開(kāi)關(guān)正向轉(zhuǎn)換器
數(shù)字電源管理能夠執(zhí)行復(fù)雜的控制算法,并具有數(shù)據(jù)總線能力,因而能夠更有力地解決這些問(wèn)題。下面我們將把該技術(shù)應(yīng)用于一個(gè)雙相交錯(cuò)式雙開(kāi)關(guān)正向轉(zhuǎn)換器,以實(shí)現(xiàn)實(shí)時(shí)優(yōu)化,提高效率。
A. 輕載與重載
開(kāi)關(guān)電源轉(zhuǎn)換器的總能量損耗等于導(dǎo)通損耗Pcond與開(kāi)關(guān)損耗Psw之和。給定輸出電流Iout和開(kāi)關(guān)頻率fs,開(kāi)關(guān)損耗為(公式1):
Psw = Psw1 + Psw2 = ksw1 • Iout • fs + ksw2 • fs
其中,ksw1和ksw2是與器件相關(guān)的開(kāi)關(guān)損耗系數(shù)。一般說(shuō)來(lái),晶體管尺寸越大,則ksw1和ksw2越高。
不考慮電感電流紋波,路徑電阻Rpath上的導(dǎo)通損耗為(公式2):
Pcond = Iout2 • Rpath
并聯(lián)使用交錯(cuò)相位可以降低路徑電阻,從而提高重載效率。然而,輕載時(shí)的功率損耗以開(kāi)關(guān)損耗為主。ksw1和ksw2隨著相位增多而提高,交錯(cuò)操作會(huì)顯著降低輕載效率。因此,與單相轉(zhuǎn)換器相比,交錯(cuò)式多相轉(zhuǎn)換器具有更高的重載效率,但輕載效率則較低。轉(zhuǎn)換器的效率為(公式3):
對(duì)于單相轉(zhuǎn)換器,空載時(shí)的電源轉(zhuǎn)換效率為0,因?yàn)殚_(kāi)關(guān)損耗部分Psw2始終存在。當(dāng)輸出電流增大時(shí),Psw2變得微不足道,因而效率隨之提高。公式3中的分母是一個(gè)二階多項(xiàng)式,而分子僅有一階,因此當(dāng)輸出電流經(jīng)過(guò)最優(yōu)點(diǎn)后,效率又開(kāi)始下降。對(duì)于雙相轉(zhuǎn)換器,效率最優(yōu)點(diǎn)時(shí)的輸出電流為單相轉(zhuǎn)換器的兩倍。因此,相位越多,重載效率越高,但輕載效率則越低。
以前認(rèn)為,只有滿載效率才是重要的。但如今,電源轉(zhuǎn)換器更多時(shí)候是為輕載供電,而不是為重載供電。隨著節(jié)能需求日益高漲,較高的輕載效率對(duì)于電源至關(guān)重要。因此,設(shè)計(jì)師希望利用智能交錯(cuò)控制器來(lái)實(shí)現(xiàn)所有負(fù)載下的高效率運(yùn)作。
[page]
B. 通過(guò)控制相數(shù)實(shí)時(shí)優(yōu)化效率
以上的功率損耗分析顯示,讓兩個(gè)并聯(lián)相位同時(shí)在輕載下工作是不合適的。如果關(guān)閉一個(gè)相位,情況將大為改觀。導(dǎo)通損耗增大,但開(kāi)關(guān)損耗減小,因此輕載效率更高。關(guān)鍵是要確保實(shí)時(shí)優(yōu)化相數(shù)。
圖2所示為一個(gè)雙相交錯(cuò)式雙開(kāi)關(guān)正向轉(zhuǎn)換器的實(shí)驗(yàn)波形,本例采用ADI公司的數(shù)字控制器ADP1043實(shí)施控制。當(dāng)總負(fù)載電流降至某一閾值以下時(shí),第二相位禁用。如圖3所示,當(dāng)一個(gè)相位關(guān)斷時(shí),輕載效率得到提高。實(shí)施和不實(shí)施相位優(yōu)化控制的輕載效率差可能高達(dá)15%。
圖2:利用ADP1043實(shí)現(xiàn)自動(dòng)相位關(guān)斷
C. 通過(guò)DCM操作實(shí)時(shí)優(yōu)化效率
從圖3可以看出,對(duì)于極低的負(fù)載,即使以單相工作,效率也會(huì)大幅下降。原因之一是轉(zhuǎn)換器的副邊使用同步整流器(圖1),當(dāng)輸出電流水平低于電流紋波時(shí),反向電流就會(huì)流過(guò)輸出電感,這種循環(huán)電流會(huì)引起導(dǎo)通損耗。為了提高效率,一種解決方案是關(guān)斷所有副邊同步整流器,放任體二極管或并聯(lián)二極管(多數(shù)情況下是肖特基二極管)自由處理。當(dāng)負(fù)載足夠低時(shí),轉(zhuǎn)換器以斷續(xù)電流模式(DCM)工作,從而避免循環(huán)電流的問(wèn)題。
圖3:高效率交錯(cuò)式雙開(kāi)關(guān)正向轉(zhuǎn)換器
采用這種方案,轉(zhuǎn)換器效率比連續(xù)電流模式(CCM)高5%。此外,輕負(fù)載時(shí)關(guān)斷一相可以進(jìn)一步提高整個(gè)應(yīng)用負(fù)載范圍的效率。
D. 考慮功率級(jí)和控制器的設(shè)計(jì)
除了采取上述措施來(lái)優(yōu)化實(shí)時(shí)效率以外,設(shè)計(jì)師還必須仔細(xì)考慮功率級(jí)和控制器的設(shè)計(jì)。功率級(jí)、檢測(cè)網(wǎng)絡(luò)和反饋控制電路存在固有的傳播延遲,因此在快速負(fù)載升壓瞬變過(guò)程中,系統(tǒng)必須保持第一相位的輸出電壓穩(wěn)定后,才能啟動(dòng)第二相位。而且,系統(tǒng)應(yīng)能短時(shí)間處理全功率。晶體管的選擇應(yīng)當(dāng)基于這種熱敏感條件。此外,磁學(xué)設(shè)計(jì)應(yīng)能避免系統(tǒng)在較高輸出電流下發(fā)生飽和。
至于控制器,反饋補(bǔ)償器需要根據(jù)不同的工作模式進(jìn)行調(diào)整,因?yàn)楣β始?jí)傳遞函數(shù)會(huì)隨著相數(shù)和CCM/DCM條件的不同而改變。這就需要控制器提供智能管理,傳統(tǒng)的控制器很難勝任。另外,數(shù)字電源管理控制器能夠自動(dòng)檢測(cè)負(fù)載條件,并且平穩(wěn)切換到合適的轉(zhuǎn)換器模式。
各相均流交錯(cuò)式操作本身并不能確保電流均勻分配。由于并聯(lián)各相共享同一電壓反饋,所以不存在因基準(zhǔn)電壓不匹配而導(dǎo)致的誤差。因此,負(fù)載不平衡與器件容差、驅(qū)動(dòng)不平衡和時(shí)序誤差有關(guān)。
電流不平衡會(huì)造成熱應(yīng)力和器件應(yīng)力。針對(duì)可能發(fā)生的過(guò)應(yīng)力狀況,晶體管和磁性器件必須采取保險(xiǎn)設(shè)計(jì)。此外,效率也會(huì)受影響。例如,如果交錯(cuò)式正向轉(zhuǎn)換器的總電流為30A,兩相分別提供10A和20A的電流,那么該因素所致的效率下降幅度接近1%。
有兩種控制方案可用來(lái)實(shí)現(xiàn)各相均流:內(nèi)環(huán)路均流和雙環(huán)路均流。內(nèi)環(huán)路均流本質(zhì)上是電流模式控制。電壓補(bǔ)償器的輸出用作均流總線,為所有相位提供輸出電流參考。在電壓環(huán)路內(nèi),均流環(huán)路設(shè)計(jì)不受電壓帶寬的限制,均流響應(yīng)甚至可以比電壓環(huán)路更快。然而,當(dāng)設(shè)計(jì)外電壓環(huán)路時(shí),必須考慮內(nèi)環(huán)路的影響。如果內(nèi)環(huán)路更快,外環(huán)路的電壓調(diào)節(jié)功能可能會(huì)被削弱。
[page]
在雙環(huán)路操作中,電壓調(diào)節(jié)環(huán)路和均流環(huán)路并聯(lián)。各相有一個(gè)專用均流補(bǔ)償器來(lái)確保其電流跟隨均流總線,它可以是并聯(lián)各相的平均電流或最高相位電流。各相的均流環(huán)路輸出與公共電壓補(bǔ)償器輸出相加,產(chǎn)生該相的占空比信號(hào)。這樣,均流控制器和電壓調(diào)節(jié)控制器均會(huì)影響占空比信號(hào)的產(chǎn)生。采用這種控制結(jié)構(gòu)時(shí),各環(huán)路可以靈活設(shè)計(jì),設(shè)計(jì)師不必過(guò)份擔(dān)心均流環(huán)路與電壓調(diào)節(jié)環(huán)路的相互影響。
無(wú)論采用何種均流方案,為了進(jìn)行有源控制,必須檢測(cè)各相的電流。傳統(tǒng)方法是各相均使用電流檢測(cè)方案。電流檢測(cè)一般用于保護(hù)目的,這種技術(shù)會(huì)增加交錯(cuò)式轉(zhuǎn)換器的成本。
為了利用一路輸入檢測(cè)兩相的電流,控制器必須分離各相的電流。在交錯(cuò)式正向操作中,主開(kāi)關(guān)的占空比始終低于50%,以免變壓器飽和。在180度相移下,主開(kāi)關(guān)電流檢測(cè)不會(huì)發(fā)生信號(hào)重疊。因此,通過(guò)數(shù)字控制可以對(duì)檢測(cè)信號(hào)進(jìn)行分配,使之與各相的占空比信號(hào)對(duì)齊。這樣,只使用一個(gè)電流檢測(cè)電路就能清楚地辨別各相的電流??刂破鞅O(jiān)控各相中流動(dòng)的電流,存儲(chǔ)此信息,并且補(bǔ)償驅(qū)動(dòng)信號(hào)以確保均流。
圖4所示為一個(gè)利用ADP1043控制器實(shí)施以上方案的交錯(cuò)式正向轉(zhuǎn)換器示例。顯而易見(jiàn),因?yàn)檎伎毡鹊陀?0%,所以利用一個(gè)公共電流檢測(cè)點(diǎn),控制器就能確定各相的電流。如果不實(shí)施均流控制,第二相位的電流幾乎是第一相位的兩倍。啟用均流控制后,兩相之間的電流差大幅降低到5%。
圖4. 兩相均流控制的效果:(上圖)啟用均流控制;(下圖)禁用均流控制。
總而言之,交錯(cuò)式操作能夠提供單相設(shè)計(jì)所不具備的優(yōu)點(diǎn)。使用數(shù)字電源管理可以進(jìn)一步擴(kuò)大交錯(cuò)式操作的好處。數(shù)字控制還能實(shí)現(xiàn)簡(jiǎn)單的均流方案。