- IGBT軟開(kāi)關(guān)在應(yīng)用中的損耗
- 需要做更薄的IGBT
- 將場(chǎng)終止層與高電阻率的晶圓襯底結(jié)合起來(lái)
IGBT技術(shù)進(jìn)步主要體現(xiàn)在兩個(gè)方面:通過(guò)采用和改進(jìn)溝槽柵來(lái)優(yōu)化垂直方向載流子濃度,以及利用“場(chǎng)終止”概念(也有稱(chēng)為“軟穿通”或“輕穿通”)降低晶圓n襯底的厚度。
此外,帶有單片二極管的IGBT概念也經(jīng)常被探討。首先投產(chǎn)的逆導(dǎo)型IGBT是針對(duì)電子鎮(zhèn)流器應(yīng)用進(jìn)行優(yōu)化的,被稱(chēng)之為“LightMOS”。
TrenchStop和RC-IGBT技術(shù)
在采用的TrenchStop技術(shù)中,溝槽柵結(jié)合了場(chǎng)終止概念(見(jiàn)圖1中的IGBT)。由于發(fā)射極(陰極)附近的載流子濃度提高,溝槽柵可使得導(dǎo)通損耗降低。場(chǎng)終止概念是NPT概念的進(jìn)一步發(fā)展,包含一個(gè)額外的植入晶圓背面的n摻雜層。
將場(chǎng)終止層與高電阻率的晶圓襯底結(jié)合起來(lái),能使器件的厚度減少大約三分之一,同時(shí)保持相同的阻斷電壓。隨著晶圓厚度的降低,導(dǎo)通損耗和關(guān)斷損耗也可進(jìn)一步降低。場(chǎng)終止層摻雜度低,因此不會(huì)影響背面植入的低摻雜p發(fā)射極。為了實(shí)現(xiàn)RC-IGBT,二極管的部分n摻雜背面陰極(圖1)將與IGBT集電極下面的p發(fā)射極結(jié)合起來(lái)。
RC-IGBT的溝槽柵概念所基于的技術(shù)與傳統(tǒng)的TrenchStop-IGBT(見(jiàn)圖2)相同,但針對(duì)軟開(kāi)關(guān)應(yīng)用所需的超低飽和壓降Vce(sat)進(jìn)行了優(yōu)化,比如電磁爐或微波爐應(yīng)用。數(shù)以萬(wàn)計(jì)的溝槽柵通過(guò)金屬(鋁)相連,該金屬鋁層同時(shí)也是連線區(qū)。柵極和發(fā)射極之間的區(qū)域和端子被嵌入絕緣亞胺薄膜里。最新的投產(chǎn)型RC2-IGBT,其溝槽柵極更小,與標(biāo)準(zhǔn)TrenchStop-IGBT相比要多出150%的溝槽柵單元。圖3為基于TrenchStop技術(shù)的最新一代RC2-IGBT的溝槽柵截面圖。
超薄晶圓技術(shù)
由于導(dǎo)通電壓和關(guān)斷損耗在很大程度上取決于晶圓的厚度,因此需要做更薄的IGBT。圖4顯示了英飛凌600/1,200VIGBT和EMCON二極管的晶圓厚度趨勢(shì)。對(duì)于新型1,200VRC-IGBT而言,120um厚度晶圓將是標(biāo)準(zhǔn)工藝。這需要進(jìn)行復(fù)雜的晶圓處理,包括用于正面和背面的特殊處理設(shè)備。將晶圓變薄可通過(guò)晶圓打磨和濕式化學(xué)蝕刻工藝實(shí)現(xiàn)。
新型RC2-IGBT的優(yōu)勢(shì)
來(lái)自英飛凌的新型RC2-IGBT系列產(chǎn)品是以成熟的TrenchStop技術(shù)為基礎(chǔ)的,具有超低飽和壓降。此外,IGBT還集成了一個(gè)功能強(qiáng)大且正向電壓超低的二極管。
新型RC2-IGBT的優(yōu)勢(shì)是針對(duì)軟開(kāi)關(guān)應(yīng)用(比如微波爐、電磁爐和感應(yīng)加熱型電飯煲)進(jìn)行優(yōu)化的定制解決方案。與以前的器件相比,RC2-IGBT可提升性能,降低飽和壓降損耗。這可導(dǎo)致非常低的總體損耗,因此所需的散熱器更小。另外一個(gè)優(yōu)勢(shì)是最大結(jié)溫被提高到TvJ(max)=175℃,比普通IGBT芯片提高了25℃。這種結(jié)溫已通過(guò)TO-247無(wú)鉛封裝的應(yīng)用驗(yàn)證。
圖1:應(yīng)用TrenchStop技術(shù)的RC-IGBT[page]
圖2:RC-IGBT芯片(IHW20N120R)前視圖
圖3:基于TrenchStop技術(shù)的最新一代RC2-IGBT的溝槽柵截面圖(溝槽柵里的洞是為分析準(zhǔn)備)
圖4:IGBT和二極管晶圓厚度變化
在典型飽和壓降Vce(sat)=1.6V@25℃/1.85V@175℃和典型正向電壓Vf=1.25V@175℃(額定電流)的條件下,功率損(特別是軟開(kāi)關(guān)應(yīng)用的導(dǎo)通損耗)可大幅度降低。由IHW20N120R2的下降時(shí)間的切線可看出高速度—tf=24ns@25℃和Rg=30Ω(44ns@175℃)。IHW30120R2在下降時(shí)間方面是最為出色的:tf=33ns@25℃,Rg=30Ω;tf=40ns@175℃。(在硬開(kāi)關(guān)條件下測(cè)量,參見(jiàn)帶有Eoff曲線的圖6和圖7)。
圖5:來(lái)自英飛凌科技的最新一代RC2-IGBT(IHWxxN120R2,xx=15A、20A、25A和30A)。采用無(wú)鉛電鍍TO-247封裝
圖6:在硬開(kāi)關(guān)條件下,175℃結(jié)溫以及室溫下IHW20N120R2(IN=20A,Vces=1,200V)和IHW30N120R2(IN=30A)的下降時(shí)間切線
圖7:在硬開(kāi)關(guān)條件下,175℃結(jié)溫以及室溫下RC2-IGBT的Eoff曲線[page]
圖6顯示如果柵極電阻低于30(,下降時(shí)間再度上升。這對(duì)于實(shí)現(xiàn)良好的EMI行為非常重要。所有市場(chǎng)上相關(guān)應(yīng)用設(shè)計(jì)目前使用的柵極電阻都在10~20Ω之間。這個(gè)柵極電阻選用區(qū)域也是最低開(kāi)關(guān)損耗區(qū)(見(jiàn)圖7)。它具有最低的開(kāi)關(guān)損耗和合適的EMI表現(xiàn)。
圖8:室溫和不同電流條件下IHW20N120R2的飽和壓降與Vf的關(guān)系
圖7和圖8顯示了最新一代RC2-IGBT(IHW20N120R2)的超低飽和壓降Vce(sat)和正向電壓Vf。圖8顯示了1,000片該器件在室溫和不同電流條件下的最低和最高飽和壓降的曲線圖,圖9顯示了它們?cè)诓煌瑴囟群?0A額定電流條件下的飽和壓降曲線圖。
圖9:20A標(biāo)稱(chēng)電流和不同溫度下IHW20N120R2的飽和壓降與Vf的關(guān)系
電壓諧振電路里的RC-IGBT
圖10顯示了用于軟開(kāi)關(guān)應(yīng)用的典型電壓諧振電路。
圖10:用于軟開(kāi)關(guān)應(yīng)用的電壓諧振電路圖
對(duì)于190V~240V交流輸入電壓而言,RC-IGBT具有低飽和壓降和正向電壓:
1.對(duì)于1.8kW的應(yīng)用:IHW15N120R2(Vce=1,200V,Ic=15A@Tc=100℃);
2.對(duì)于2.0kW的應(yīng)用:IHW20N120R2(Vce=1,200V,Ic=20A@Tc=100℃);
3.對(duì)于2.2kW的應(yīng)用:IHW25N120R2(Vce=1,200V,Ic=25A@Tc=100℃);
4.對(duì)于2.4kW的應(yīng)用:IHW30N120R2(Vce=1,200V,Ic=30A@Tc=100℃)。
為了測(cè)量IGBT的集電極電流Ice,應(yīng)在發(fā)射極和地之間使用超低阻值的取樣電阻器。圖11為Vce和Ic的波形(搪瓷燒鍋負(fù)載)。工作頻率為29.1kHz,LC電路在諧振范圍之外(電磁爐的溫度模式為50℃)。
圖11:1.8kW電磁爐應(yīng)用(IHW20N120R2)的電壓諧振電路波形
針對(duì)軟開(kāi)關(guān)應(yīng)用進(jìn)行優(yōu)化的RC-IGBT技術(shù)可大幅度降低飽和壓降造成的損耗。最大結(jié)溫提升到175℃進(jìn)一步增強(qiáng)了芯片的電流能力。關(guān)斷開(kāi)關(guān)損耗以及發(fā)射極關(guān)斷電流幾乎沒(méi)有變化。