【導(dǎo)讀】集成無源器件在我們的行業(yè)中并不是什么新事物——它們由來已久且眾所周知。實(shí)際上,ADI公司過去曾為市場(chǎng)生產(chǎn)過這類元件。當(dāng)芯片組將獨(dú)立的分立無源器件或者是集成無源網(wǎng)絡(luò)作為其一部分包含在內(nèi)時(shí),需要對(duì)走線寄生效應(yīng)、器件兼容性和電路板組裝等考慮因素進(jìn)行仔細(xì)的設(shè)計(jì)管理。雖然集成無源器件繼續(xù)在業(yè)界占據(jù)重要地位,但只有當(dāng)它們被集成到系統(tǒng)級(jí)封裝應(yīng)用中時(shí)才能實(shí)現(xiàn)其最重要的價(jià)值。
幾年前,ADI開始推出新的集成無源技術(shù)計(jì)劃 (iPassives™)。ADI旨在通過這項(xiàng)計(jì)劃提供二極管、電阻、電感和電容等無源元件,從而能夠更廣泛地涵蓋信號(hào)鏈設(shè)計(jì),同時(shí)克服現(xiàn)有采用無源元件方法的局限性和復(fù)雜性。ADI的客戶群對(duì)具有高效空間尺寸的更完整解決方案的需求,也推動(dòng)了這項(xiàng)計(jì)劃的發(fā)展。從設(shè)計(jì)人員的角度來看,iPassives可以被視為一種靈活的設(shè)計(jì)工具,能夠在極短的開發(fā)周期內(nèi)設(shè)計(jì)出具有同類最佳性能和魯棒性的系統(tǒng)解決方案。ADI擁有許多信號(hào)調(diào)理IC,我們擁有的獨(dú)特硅制造工藝使這些IC能夠?qū)崿F(xiàn)卓越的性能。ADI可以充分利用其現(xiàn)有產(chǎn)品的多樣性來生產(chǎn)具有卓越性能特征的即插即用系統(tǒng),而無需開發(fā)高度復(fù)雜的集成流程。在高度可定制的網(wǎng)絡(luò)中將集成無源技術(shù)與所有這些現(xiàn)有技術(shù)緊密結(jié)合,并利用系統(tǒng)級(jí)封裝技術(shù)進(jìn)行封裝,從而可創(chuàng)建完全經(jīng)過認(rèn)證、測(cè)試和表征的Module®器件。以前采用板級(jí)解決方案的系統(tǒng)現(xiàn)在可以簡(jiǎn)化為單個(gè)器件。從我們的客戶角度來看,他們現(xiàn)在可以獲得完整的解決方案,具有出色的開箱即用性能,可縮短開發(fā)周期并節(jié)約成本,而且所有這些都在非常緊湊的封裝內(nèi)實(shí)現(xiàn)。
無源技術(shù)
現(xiàn)在,我們來簡(jiǎn)要回顧一下基礎(chǔ)知識(shí),回想一下什么是無源元件。無源元件是無需電源供電的器件,它們的電流和電壓之間的關(guān)系相對(duì)簡(jiǎn)單。這些元件包括電阻、電容、電感、變壓器(即有效耦合電感)和二極管。有時(shí)電流-電壓之間的關(guān)系非常簡(jiǎn)單,就像電阻中電流隨電壓線性變化一樣。對(duì)于二極管來說,電流和電壓之間也存在直接關(guān)系,只是這種關(guān)系是指數(shù)關(guān)系。在電感和電容中,該關(guān)系是電流對(duì)電壓的瞬態(tài)依賴性。表1所示為四種基本無源元件定義這些關(guān)系的公式:
表1. 主要無源元件的基本公式
無源器件既可以單獨(dú)使用,也可以串聯(lián)或并聯(lián),是模擬信號(hào)處理(RLC用于放大、衰減、耦合、調(diào)諧和濾波)、數(shù)字信號(hào)處理(上拉電阻、下拉電阻和阻抗匹配電阻)、EMI抑制(LC噪聲抑制)和電源管理(R用于電流檢測(cè)和限制,LC用于能量累積)的重要組成部分。
分立元件的局限性
過去,無源元件是分立的,這意味著它們是分別制造的,并且在電路中通過印刷電路板 (PCB) 上的導(dǎo)線或電源軌相連。隨著時(shí)間的推移,它們沿著三條路徑發(fā)展演變:更小的尺寸、更低的成本和更高的性能。這些發(fā)展現(xiàn)在已經(jīng)很成熟并經(jīng)過了優(yōu)化,但是占位尺寸和高度尺寸意味著分立無源元件總是限制了縮小整體解決方案的面積和體積的努力成效。無源器件通常在一個(gè)應(yīng)用中占物料清單的80%以上,占線路板面積約60%,占整個(gè)元件支出約20%。這些因素綜合在一起帶來了非常復(fù)雜的庫(kù)存控制和存儲(chǔ)挑戰(zhàn)。
就其本質(zhì)而言,分立器件是單獨(dú)處理的元件。盡管可能有一些方法可以確保從某些工藝批次中選擇元件,但每個(gè)元件仍然具有高度的獨(dú)特性。然而,當(dāng)需要非常匹配的元件時(shí),這是一個(gè)顯著的缺點(diǎn)。對(duì)于需要匹配的設(shè)備來說,元件之間的獨(dú)特性和差異性會(huì)導(dǎo)致誤差,從而降低時(shí)間零點(diǎn)的電路性能。此外,在電路的工作溫度范圍內(nèi)及使用壽命期間,這種性能下降總是越來越糟糕。
分立無源器件的另一個(gè)缺點(diǎn)是各個(gè)元件的組裝和布線非常耗時(shí),并且還占用很大的空間。這些元件使用
焊接工藝連接,一般是通過通孔或表貼封裝技術(shù)(SMT)組裝。通孔是一種比較老的組裝技術(shù),它將帶引線的器件插入PCB的孔中,任何多余的引線長(zhǎng)度都將被折彎并切除,并通過波峰焊將器件的引線連接至PCB互連電源軌。表貼封裝幫助實(shí)現(xiàn)了更小的無源元件。在這種情況下,在PCB上蝕刻貼裝連接圖案,將焊錫膏覆蓋在圖案上,接著使用貼片機(jī)來定位放置SMT元件。然后,PCB經(jīng)過回流焊工藝(其間焊錫膏液化并建立電氣連接),并在冷卻時(shí),焊錫膏凝固并將SMT元件機(jī)械連接到PCB上。這兩種組裝技術(shù)的主要問題是,焊接過程可能非常不可靠,在缺陷目標(biāo)是每百萬分之幾的行業(yè)中,這一點(diǎn)越來越令人擔(dān)憂。在確保焊點(diǎn)可靠性方面有幾個(gè)因素非常重要:焊錫膏的實(shí)際成分(現(xiàn)在基本上都是無鉛的,因此可靠性降低)、回流焊工藝中的機(jī)械穩(wěn)定性(機(jī)械振動(dòng)可使焊點(diǎn)干燥)、焊錫膏的純度(任何污染物都會(huì)對(duì)焊點(diǎn)的可靠性產(chǎn)生負(fù)面影響),以及回流焊工藝中的時(shí)間與溫度。焊錫膏加熱的速度如何、實(shí)際溫度和溫度的均勻性怎樣以及焊錫膏加熱的時(shí)間都非常關(guān)鍵。其中的任何變化都可能導(dǎo)致連接焊盤或通孔的損壞,或者也可能引起器件上的機(jī)械應(yīng)力,隨著時(shí)間的推移而導(dǎo)致故障。
在PCB上采用無源元件的另一個(gè)局限是,由于它們板上分布在各處,走線需要很長(zhǎng)。這可能會(huì)引入未計(jì)入的寄生參數(shù),從而使性能和結(jié)果的可重復(fù)性受限。通常,PCB走線具有大約1 nH/mm自感的長(zhǎng)度和電容,取決于線寬和與附近走線的距離。PCB走線的容差導(dǎo)致了寄生參數(shù)的變異,所以不僅帶來寄生效應(yīng)的破壞性,而且它們還是不可預(yù)測(cè)的。在PCB板上縮小容差會(huì)增加成本。
無源器件還提供了許多與外界的潛在接觸點(diǎn),這些接觸點(diǎn)經(jīng)手動(dòng)處理或機(jī)器處理可能會(huì)引起ESD事件。同樣,這對(duì)整體可靠性和魯棒性會(huì)造成不利影響和風(fēng)險(xiǎn)。
集成無源器件的優(yōu)勢(shì)
在深入探討集成無源器件相比分立無源器件的優(yōu)勢(shì)之前,我們首先概述一下集成無源器件的起源。集成電路現(xiàn)在包含了許多晶體管(實(shí)際上是數(shù)百萬個(gè)),它們由精細(xì)的金屬互相連接在一起。針對(duì)模擬類的應(yīng)用,業(yè)界還開發(fā)了特殊的工藝,如DAC和ADC中除了晶體管,還包含電阻和電容等無源元件。為了實(shí)現(xiàn)這些精密的模擬應(yīng)用所需的性能,已經(jīng)開發(fā)出質(zhì)量非常高的無源元件。用來構(gòu)建集成無源器件的正是這些高質(zhì)量的無源元件。正如集成電路中包含許多晶體管一樣,集成無源器件可以在一個(gè)非常小的封裝內(nèi)包含許多高質(zhì)量的無源元件。與集成電路一樣,集成無源器件在大面積襯底(晶圓)上制造,同時(shí)生成多個(gè)無源網(wǎng)絡(luò)。
與分立無源元件相比,集成無源器件最引人注目的優(yōu)勢(shì)之一是可以實(shí)現(xiàn)精確匹配。在制造集成無源網(wǎng)絡(luò)時(shí),網(wǎng)絡(luò)內(nèi)的所有元件都是在相同條件下同時(shí)制造的,具有相同的材料,而且由于網(wǎng)絡(luò)緊湊,基本上是在同一位置。采用這種方式制造的無源元件比分立無源元件更可能具有出色的匹配。為了說明這一點(diǎn),我們假設(shè)有一個(gè)應(yīng)用需要兩個(gè)匹配的電阻。這些電阻在圓形襯底(如硅晶圓)上制造,如圖1所示。由于細(xì)微的工藝差異,如電阻薄膜的厚度、薄膜的化學(xué)性質(zhì)、接觸電阻等,因此在同一個(gè)批次內(nèi)將存在一定的阻值差異,而在多個(gè)批次里差異值更大。在圖1所示的例子中,深綠色表示電阻在容差范圍的高位值端,黃色表示電阻在容差范圍的低位值端。
對(duì)于標(biāo)準(zhǔn)的分立器件來說,兩個(gè)電阻中的任意一個(gè)都可能來自不同的制造批次,如圖中用紅色表示的兩個(gè)單獨(dú)的電阻。這兩個(gè)分立電阻之間可觀察到的容差范圍可能是整個(gè)工藝的容差范圍,因此匹配較差。對(duì)于有特殊的訂購(gòu)限制而言,有可能從同一個(gè)批次中選擇這兩個(gè)分立電阻,如圖中用藍(lán)色標(biāo)出的兩個(gè)單獨(dú)的電阻。這兩個(gè)電阻之間可觀察到的容差只會(huì)是在同一個(gè)批次內(nèi)的容差范圍。雖然這兩個(gè)電阻之間的匹配將優(yōu)于隨機(jī)分立器件的情況,但仍有可能出現(xiàn)某種程度的不匹配。最后,對(duì)于集成無源器件,兩個(gè)電阻來自同一個(gè)芯片,如圖1黑色所示。這兩個(gè)電阻之間唯一可觀察到的容差是在同一個(gè)管芯內(nèi)的容差范圍。因此,這兩個(gè)電阻之間的匹配將非常出色。此外,使用交叉四邊形布局的其他技術(shù)和其他方法可以進(jìn)一步嚴(yán)格限制兩個(gè)電阻之間的擴(kuò)散,使元件的匹配達(dá)到最佳值。集成無源元件之間的匹配不僅在時(shí)間零點(diǎn)比分立無源元件要好得多,而且由于其制造已經(jīng)很好地耦合,因此在整個(gè)溫度、機(jī)械應(yīng)力和使用壽命范圍內(nèi)都可保持更好的匹配記錄。
圖1. 分立電阻與無源電阻的匹配比較。
集成無源器件中的各個(gè)元件緊密地放置在一起(實(shí)際上在微米范圍內(nèi)),因此,互連寄生參數(shù)(如布線電阻和電感)可以保持在極低的水平。在PCB上,由于走線容差和元件放置容差,互連寄生參數(shù)可能會(huì)發(fā)生變化。由于制造工藝中采用微影工藝,因此使用集成無源器件的互連容差和元件放置容差都很小。在集成無源器件中,不僅寄生參數(shù)非常小,而且這些為數(shù)不多的參數(shù)還是可預(yù)測(cè)的,因此可靠性很高。
通過集成無源器件實(shí)現(xiàn)無源網(wǎng)絡(luò)的小型化,為電路板直接帶來小尺寸的優(yōu)勢(shì)。這直接使電路板成本降低,并允許在更小的占位空間上實(shí)現(xiàn)更多功能和更高性能。使用集成無源器件時(shí),構(gòu)建多通道系統(tǒng)變得更加實(shí)際可行。
集成無源器件的另一個(gè)顯著優(yōu)勢(shì)是其整個(gè)布線網(wǎng)絡(luò)周圍的魯棒性。集成無源器件本質(zhì)上是在一個(gè)完整的單元里一起鍛造,用玻璃密封,然后進(jìn)一步由牢固的塑料封裝進(jìn)行保護(hù),而不需要大量的焊接連接。在集成無源網(wǎng)絡(luò)中,不存在焊點(diǎn)干燥、腐蝕或元件錯(cuò)位的問題。
集成無源網(wǎng)絡(luò)密封性能出色帶來的另一個(gè)優(yōu)勢(shì)是,系統(tǒng)中暴露節(jié)點(diǎn)的數(shù)量大大減少。因此,系統(tǒng)因意外短路或靜電放電 (ESD) 事件損壞的可能性顯著降低。
維護(hù)和控制任何電路板組裝的元件庫(kù)存都是一項(xiàng)非常復(fù)雜的任務(wù)。集成無源器件在一個(gè)器件內(nèi)包含多個(gè)無源元件,大大減輕了客戶的物料清單負(fù)擔(dān),從而降低擁有成本??蛻艨梢垣@得經(jīng)過完全測(cè)試和充分驗(yàn)證的集成無源網(wǎng)絡(luò)。這意味著,最終線路板構(gòu)建的產(chǎn)量得到提高,這不僅可以進(jìn)一步節(jié)省成本,還可以提高供應(yīng)鏈的可預(yù)測(cè)性。
使用ADI的集成無源器件(iPassives)
如前所述,高質(zhì)量的無源器件一直是ADI多年來眾多產(chǎn)品所實(shí)現(xiàn)的電路性能的核心。在此期間,無源器件的范圍不斷擴(kuò)大并且質(zhì)量不斷提高,集成無源器件產(chǎn)品組合現(xiàn)在包含大量元件。集成無源器件采用模塊化工藝,這意味著只有在需要特定元件時(shí)才需要執(zhí)行生產(chǎn)某種類型無源器件所需的工藝步驟。iPassives網(wǎng)絡(luò)的構(gòu)建基本上只需要必需的工藝復(fù)雜性,不多也不少。如圖2所示,有許多無源構(gòu)建塊可供選擇,構(gòu)建一個(gè)集成無源網(wǎng)絡(luò)就像將所需元件拼裝在一起一樣簡(jiǎn)單。
圖2. iPassives構(gòu)建塊。
如本文前面所述,集成無源器件與分立無源器件相比具有許多優(yōu)勢(shì)。ADI將它們用于Module器件中,進(jìn)一步加強(qiáng)了這些優(yōu)勢(shì)。這些模塊利用了各種集成電路的功能。這些電路通過量身定制的工藝進(jìn)行制造,所提供的增強(qiáng)性能是無法通過其他任何單一工藝實(shí)現(xiàn)的。ADI正在使用iPassives將這些集成電路連接在一起,由此在單個(gè)器件內(nèi)構(gòu)建完整的精密信號(hào)鏈。圖3中的兩個(gè)Module器件示例包括數(shù)據(jù)轉(zhuǎn)換器、放大器和其他元件,通過采用集成無源器件構(gòu)建的無源增益和濾波網(wǎng)絡(luò)將它們結(jié)合在一起。
圖3. 使用iPassives的μModule產(chǎn)品示例。
ADI生產(chǎn)高度可定制的精密信號(hào)調(diào)理系統(tǒng)。采用來自大量經(jīng)現(xiàn)場(chǎng)驗(yàn)證的IC產(chǎn)品組合的可重復(fù)使用的方法,并將其與iPassives的多功能性相結(jié)合,從而使開發(fā)周期時(shí)間和成本都顯著下降。這一決定為客戶提供了巨大的優(yōu)勢(shì),使客戶可以自行利用最先進(jìn)的性能更快、更高效地進(jìn)入市場(chǎng)。
結(jié)論
乍一看,使用集成無源器件可能只會(huì)比其他更成熟的方法顯得略微有利。然而,實(shí)際優(yōu)勢(shì)更為顯著,ADI采用iPassives不僅重新定義了可以實(shí)現(xiàn)的功能,還重新定義了速度、成本和設(shè)計(jì)尺寸,使之對(duì)客戶更為有利。
推薦閱讀: