倒置雙斜率ADC提高動態(tài)范圍
發(fā)布時間:2018-03-01 來源:Stephen Woodward 責(zé)任編輯:wenwei
【導(dǎo)讀】四十年來,雙斜率積分A/D轉(zhuǎn)換已經(jīng)成為大多數(shù)數(shù)字萬用表和許多工業(yè)和儀器應(yīng)用的核心。雙斜率模數(shù)轉(zhuǎn)換器結(jié)合了模擬積分器、比較器和控制邏輯,形成第一個“斜率”和第二個“斜率”。本設(shè)計對常見的算法做了一些修改,簡單地顛倒信號和參考積分的順序,產(chǎn)生倒數(shù)雙斜率積分ADC。
四十年來,雙斜率積分A/D轉(zhuǎn)換已經(jīng)成為大多數(shù)數(shù)字萬用表和許多工業(yè)和儀器應(yīng)用的核心。雙斜率模數(shù)轉(zhuǎn)換器結(jié)合了模擬積分器、比較器和控制邏輯,將輸入信號Vin以固定的時間間隔T1進(jìn)行累積(積分)——構(gòu)成第一個“斜率”,然后將積分器的輸入切換到一個固定的負(fù)參考Vref,使被積函數(shù)退回零——第二個“斜率”,同時測量這樣做所需的時間T2。輸入電壓為:
本設(shè)計對常見的算法做了一些修改:簡單地顛倒信號和參考積分的順序,產(chǎn)生我所說的倒數(shù)雙斜率積分ADC(RDSADC)。
這里,對Vref按固定的時間間隔T1進(jìn)行積分。然后將積分器輸入切換到-Vin,并測量回降到零所需的時間T2。從而:
看到這么兩個相似的方程,你可能會理所當(dāng)然地問:“那又怎樣?”看下面:
在公式2中,轉(zhuǎn)換結(jié)果與時間測量值T2成反比,因此與1/Vin成反比,并且微分計算告訴我們,逆向變化率在變,但不是線性的,而是測量值倒數(shù)的平方,即:
這種設(shè)計的好處是實(shí)現(xiàn)了非線性轉(zhuǎn)換測量,它可以保持低幅度輸入的高分辨率,而不需要Vin比例系數(shù)的自動量程切換。圖1是RDSADC的一個實(shí)現(xiàn)示例。它在10位分辨率、1mV到1V范圍,對輸入進(jìn)行轉(zhuǎn)換,同時在下面兩種極端情況下保持10位分辨率:Vin=1V、1mV分辨率;Vin=1mV、1μV分辨率。這意味著對T2,只需15位、32k計數(shù)分辨率,就可實(shí)現(xiàn)1000000:1、20位的動態(tài)范圍。換句話說,只要15位計數(shù)就可實(shí)現(xiàn)20位動態(tài)范圍,與分辨率類似的傳統(tǒng)DSADC相比,轉(zhuǎn)換時間效率提高了32倍。實(shí)際上,Vin可從比0V小點(diǎn)一直到5V(分辨率隨之降低)。
圖1: RDSADC顛倒了通常的積分順序,以大幅增加動態(tài)范圍。
它是如何工作的:
RDSADC周期開始于S1通過R4/(R3 + R4)分壓器將Vref連接至積分器A2的“+”輸入(引腳3),并在時間間隔T1期間積分,在V2 = Vref時結(jié)束,并將比較器A1輸出切換為低。
圖2:RDSADC時序圖。
S1讓A2的“+”輸入掉至接近參考地(稍后更低些),而S2則通過R1將A2的“-” 輸入切換至接近Vin。然后V2以幾乎與Vin成比例的斜率下降,確定計數(shù)間隔T2。V2到達(dá)A1的低門限時,終止T2,完成該ADC周期并開始下一個周期,不斷循環(huán)。
聰明的讀者會注意到,在T2期間,當(dāng)S1從A1的“+”輸入中剔除Vref時,R5產(chǎn)生了一個42mV的正偏壓。這種偏置的目的是,盡管使用單極性電源,也要使A2的輸出一直到T2斜線的末端都保持有效。
同樣在T2期間,R2也產(chǎn)生了有效的32mV偏置1,以確保T2保持有限時長(從不超過32ms),即使Vin接近零也是如此。從而:
這種理想化的計算忽略了現(xiàn)實(shí)中的偏差,如A1和A2輸入偏移、Vref精度和電阻變化,但這些缺陷可以通過簡單的Vfullscale和Vzero兩點(diǎn)校準(zhǔn)以計算方式輕松補(bǔ)償。
注1: 32mV來自R1-R2對2.5V的Vref(50mV)的分壓,它為Vin/20kΩ輸入電流提供1.6μA(32mV/20kΩ)的偏置電流,減去分壓器R3-R5(18mV)提供的“保持有效(keep-alive)”偏置。因此,50mV - 18 mV = 32mV。
本文轉(zhuǎn)載自電子技術(shù)設(shè)計。
推薦閱讀:
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 一文看懂電壓轉(zhuǎn)換的級聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計簡介
- 如何通過基本描述找到需要的電容?
技術(shù)文章更多>>
- 瑞典名企Roxtec助力構(gòu)建安全防線
- 貿(mào)澤與Cinch聯(lián)手發(fā)布全新電子書深入探討惡劣環(huán)境中的連接應(yīng)用
- 第二十二屆中國國際軟件合作洽談會在成都順利舉行
- 混合信號示波器的原理和應(yīng)用
- 功率器件熱設(shè)計基礎(chǔ)(十)——功率半導(dǎo)體器件的結(jié)構(gòu)函數(shù)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動車
電動工具
電動汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖
電路圖符號
電路圖知識
電腦OA
電腦電源
電腦自動斷電
電能表接線
電容觸控屏
電容器
電容器單位