學(xué)術(shù)界的AI vs 工業(yè)界的AI:區(qū)別在哪里?
發(fā)布時(shí)間:2017-11-27 責(zé)任編輯:wenwei
【導(dǎo)讀】很多關(guān)心研發(fā)的人會有這樣的疑問。去年,講到人工智能時(shí)人們會談到它具有“三要素”:算法、算力和數(shù)據(jù);從今年開始,把場景加入進(jìn)來,開始用“四元分析”的方式來理解人工智能。加入場景非常重要的原因是人工智能終究是一種技術(shù),人工智能必須要落實(shí)到精準(zhǔn)的場景,才有它實(shí)實(shí)在在的價(jià)值。
現(xiàn)在不少學(xué)界的科學(xué)家都到公司里做研發(fā),那么,在工業(yè)界從事研發(fā)和以前在學(xué)界究竟有哪些不同?
學(xué)術(shù)界追逐精度的極限
人工智能的概念實(shí)在太大了,現(xiàn)在深度學(xué)習(xí)最熱,學(xué)術(shù)界里研究深度學(xué)習(xí)會做些什么事情呢?一般情況下,學(xué)術(shù)界把問題設(shè)立好后,去思考研究一些新的算法,然后在具體的問題上,力圖在精度上達(dá)到極限。從深度學(xué)習(xí)上設(shè)計(jì)更好的模型結(jié)構(gòu)方面,過去這些年,像最初的Hinton用最基本的網(wǎng)絡(luò)結(jié)構(gòu),到谷歌的GoogleNet,微軟的殘差網(wǎng)絡(luò)(ResNet),可以看到基礎(chǔ)網(wǎng)絡(luò)結(jié)構(gòu)是推動學(xué)術(shù)界往前走的核心。但是除了基本的網(wǎng)絡(luò)結(jié)構(gòu)之外,更大的網(wǎng)絡(luò)、更深的網(wǎng)絡(luò)以及不同的網(wǎng)絡(luò)模型的融合,也是大家追逐精度的常用方法。
另一方面,我們要訓(xùn)練這些網(wǎng)絡(luò),可能需要更多的計(jì)算資源,比如需要圖形處理器集群(GPU Cluster),比如希望有更便捷的訓(xùn)練平臺,像Caffe、MxNet、Tensorflow等等。當(dāng)然,更重要的是大家在一點(diǎn)點(diǎn)往前推動的同時(shí),積累了很多小的經(jīng)驗(yàn),這些經(jīng)驗(yàn)通過學(xué)術(shù)報(bào)告、論文的形式來分享。
大家都站在巨人的肩膀上一步一步往前走。當(dāng)然,還有怎么樣用其他的非標(biāo)注的數(shù)據(jù)來提升解決問題的能力。所有的一切都結(jié)合在一起,在解決具體問題的時(shí)候,能夠把精度達(dá)到極限。
學(xué)術(shù)界很多時(shí)候研究的目的,是要有成果論文發(fā)在最頂級的學(xué)術(shù)雜志上,也希望這些算法能夠具有普適性,除了能解決自己的問題,其他人也能借鑒,最好能開源,所有人都可以去使用,這樣就能很好地提升自己在這個(gè)領(lǐng)域的影響力。
沒有瑕疵的用戶體驗(yàn)如何產(chǎn)生
但工業(yè)界不是這樣。工業(yè)界要去探索商業(yè),注定要有經(jīng)濟(jì)上的考慮,思考盈利模式,那對人工智能的考慮就會不一樣。
在工業(yè)界待過就會明白,人工智能本身并不是一個(gè)產(chǎn)品,不是單純靠人工智能就能獲得利益,必須要與自己的業(yè)務(wù)和場景相結(jié)合,才能發(fā)揮它的價(jià)值,核心算法只是其中的一個(gè)模塊而已。無論是往前端走,還是往后端走,還是需要很多不同類型的人,才可以做出一個(gè)產(chǎn)品。
最重要的是,人工智能并不是一個(gè)靜態(tài)的東西。比如說訓(xùn)練出來的模型,要用到某個(gè)業(yè)務(wù)場景里面,業(yè)務(wù)場景里產(chǎn)生新的數(shù)據(jù),這些數(shù)據(jù)進(jìn)一步提升人工智能模型的能力,再用到場景里面,這是一個(gè)閉環(huán)和不斷迭代的過程。
另一方面,也是很多從學(xué)術(shù)界到工業(yè)界的教授和學(xué)者很容易犯的一個(gè)很嚴(yán)重的錯誤,就是認(rèn)為技術(shù)在真正推動產(chǎn)品。但其實(shí),用在具體的場景里面,技術(shù)只是起到一個(gè)非常小的作用,它的貢獻(xiàn)大概30%到40%就不錯了。
一個(gè)成功的產(chǎn)品,還需要產(chǎn)品工程師和非常多的人,大家一起才能做出一個(gè)具備非常完美的用戶體驗(yàn)的產(chǎn)品出來。一個(gè)核心點(diǎn)就是我們做技術(shù)的人,做研究的人,要明白永遠(yuǎn)沒有完美的算法,算法永遠(yuǎn)是有瑕疵存在的,我們一定要和場景工程師在一起,通過好的產(chǎn)品設(shè)計(jì),把這些算法上的瑕疵避免掉,打造沒有瑕疵的用戶體驗(yàn)。
此外,除了考慮用戶體驗(yàn),工業(yè)界設(shè)計(jì)一個(gè)產(chǎn)品還會考慮其他方面。比如,當(dāng)前把視覺,語音和相關(guān)的技術(shù)用在智能硬件上的時(shí)候,工業(yè)界可能會想,到底這個(gè)產(chǎn)品能不能滿足某種高頻的剛需?
工業(yè)界還會考慮一款產(chǎn)品用到的技術(shù)有沒有成熟?比如說家用機(jī)器人,可以端茶送水,可以聊天,這是不可能的,技術(shù)上還有一個(gè)過程。
另外,工業(yè)界還會考慮技術(shù)成熟了,但有沒有壁壘?假設(shè)沒有技術(shù)壁壘的話,今天做一個(gè)產(chǎn)品出來,比較前沿的大公司,都有專家團(tuán)隊(duì),你把這個(gè)產(chǎn)品做出來立馬又失掉了,技術(shù)上的壁壘也一定要有。
另外一方面,就是學(xué)術(shù)界想得最少的:我們做一個(gè)場景,一定要有變現(xiàn)的模式。沒有一個(gè)變現(xiàn)的模式,產(chǎn)品出來了,但是今后掙不了錢,也不可能讓這個(gè)公司維系下去。
用四元分析來看學(xué)界和工業(yè)界的區(qū)別
總的來說,學(xué)界進(jìn)行人工智能、深度學(xué)習(xí)的研究,一直是在追求精度和極限。用四元分析的方法來說就非常有意思,即場景和數(shù)據(jù)確定了,然后設(shè)定一個(gè)問題,設(shè)定一個(gè)數(shù)據(jù)集,假設(shè)有足夠多的計(jì)算機(jī)資源,怎么樣設(shè)計(jì)新的算法,讓精度能夠達(dá)到極限?
有很多的數(shù)據(jù)集,比如ImageNet,號稱人工智能的世界杯;人臉研究界有LFW(人臉圖片的數(shù)據(jù)庫,用來研究不受限的人臉識別問題);在視頻領(lǐng)域有美國組織的TRECVID;語音的話有Switchboard。他們共同特點(diǎn)就是:問題和數(shù)據(jù)都是確定的,用盡量多的計(jì)算機(jī)資源,去設(shè)計(jì)不同的算法,最終希望達(dá)到精度的上限。
但不得不承認(rèn),很多成果是沒辦法商業(yè)化的。為什么?在ImageNet上,假設(shè)訓(xùn)練了1000多層的網(wǎng)絡(luò),把9個(gè)或更多網(wǎng)絡(luò)全部合在一起能達(dá)成一個(gè)很好的精度,在現(xiàn)實(shí)的場景下是不可能用這么大的模型和這么多的資源去做一件事情。所以,很多的成果,是假設(shè)將來計(jì)算能力達(dá)到一定的程度,精度能夠達(dá)到這個(gè)上限。
AI研究的另外一個(gè)維度是追求用戶體驗(yàn)的極限。用四元分析的方法,是把場景和算力固定了。這是什么意思?假設(shè)我們要做一個(gè)機(jī)器人,希望它能識別你,這時(shí)候場景是確定的。算力確定了是說,這個(gè)場景推出的時(shí)候,用什么樣的芯片和什么樣的硬件,其實(shí)已經(jīng)確定了。我們要做的事情是在這樣一個(gè)確定場景和算力的情況下,怎么樣去提升數(shù)據(jù)和算法,跟具體的應(yīng)用場景去形成一個(gè)閉環(huán),去不斷地迭代,去提升它的性能。這跟學(xué)術(shù)界把場景和數(shù)據(jù)固定是完全不一樣的。在這種場景下,可以不停地用收集到的新數(shù)據(jù)不停提升和優(yōu)化模型,在數(shù)據(jù)、算法和場景三要素中形成一個(gè)閉環(huán)。雖然我們能把所有的問題解決,但是在具體的場景下,也有可能逐步地提升它的性能。
這時(shí)候做的事情很有意思——要做很多數(shù)據(jù)的清洗、標(biāo)注。為了把產(chǎn)品的價(jià)格降低,比如用一個(gè)很差的CPU就能夠去做計(jì)算,肯定要不停地去優(yōu)化模型的速度。另一方面,很多時(shí)候,滿足這種體驗(yàn)的需求會使一些新的問題誕生出來。
仔細(xì)想一想,學(xué)術(shù)界多數(shù)做的事情是在思考,在想它的極限在哪,主要用腦;工業(yè)界并不是強(qiáng)調(diào)用腦,而是用心——就是怎么樣能把這個(gè)場景做出來,并不一定要有非常高大上的算法,就是要從用戶使用產(chǎn)品的維度上,讓用戶感覺這個(gè)產(chǎn)品非常好。
學(xué)術(shù)界和工業(yè)界又不是完全割裂的:工業(yè)界敢去提某一個(gè)產(chǎn)品的設(shè)想,是看到了在學(xué)術(shù)界有一些前沿的成果,可以在工業(yè)界來用。同時(shí),工業(yè)界也在逐步提煉它的問題,扔給學(xué)術(shù)界,希望他們?nèi)プ鲞@種前沿的探索。比如說工業(yè)界可以想,三年、五年以后會往哪些方向去推動,他就可以把這些任務(wù)推給學(xué)術(shù)界。
在人工智能、深度學(xué)習(xí)的研究領(lǐng)域,學(xué)術(shù)界和工業(yè)界的差別還是很大的,同時(shí)也相互作用,相互增強(qiáng)。學(xué)術(shù)界和工業(yè)界一起合作,研究和產(chǎn)業(yè)相結(jié)合,一定會把人工智能帶上另外一個(gè)階段。
本文作者系360公司首席科學(xué)家、人工智能研究院院長。
(來源:中國經(jīng)濟(jì)網(wǎng))
推薦閱讀:
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 一文看懂電壓轉(zhuǎn)換的級聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計(jì)簡介
- 如何通過基本描述找到需要的電容?
技術(shù)文章更多>>
- 瑞典名企Roxtec助力構(gòu)建安全防線
- 貿(mào)澤與Cinch聯(lián)手發(fā)布全新電子書深入探討惡劣環(huán)境中的連接應(yīng)用
- 第二十二屆中國國際軟件合作洽談會在成都順利舉行
- 混合信號示波器的原理和應(yīng)用
- 功率器件熱設(shè)計(jì)基礎(chǔ)(十)——功率半導(dǎo)體器件的結(jié)構(gòu)函數(shù)
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動車
電動工具
電動汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖
電路圖符號
電路圖知識
電腦OA
電腦電源
電腦自動斷電
電能表接線
電容觸控屏
電容器
電容器單位