你的位置:首頁 > EMC安規(guī) > 正文
EMC開關(guān)節(jié)點(diǎn)布局注意事項(xiàng)
發(fā)布時(shí)間:2021-09-09 來源:Todd Toporski 責(zé)任編輯:wenwei
【導(dǎo)讀】開關(guān)穩(wěn)壓器或功率變換器電路的開關(guān)節(jié)點(diǎn)是關(guān)鍵的傳導(dǎo)路徑,在進(jìn)行PCB布局時(shí)需要特別注意。 該電路節(jié)點(diǎn)將一個(gè)或多個(gè)功率半導(dǎo)體開關(guān)(例如MOSFET或二極管)連接到磁能存儲(chǔ)設(shè)備(例如電感或變壓器繞組),其開關(guān)信號包含了快速切換的dV/dt電壓和dI/dt電流,它們很容易耦合到周圍的電路上并產(chǎn)生噪聲問題,可能導(dǎo)致PCB和系統(tǒng)無法滿足嚴(yán)格的電磁兼容性(EMC)要求。
本文將介紹最基本的開關(guān)節(jié)點(diǎn)波形,助您了解如何在PCB路由時(shí)確定適當(dāng)?shù)拈_關(guān)(SW)節(jié)點(diǎn)走線尺寸,并了解開關(guān)節(jié)點(diǎn)中電場(E場)和磁場(H場)產(chǎn)生的近場耦合效應(yīng)。
開關(guān)節(jié)點(diǎn)波形
在開始這部分關(guān)鍵走線的PCB設(shè)計(jì)之前,首先要了解開關(guān)節(jié)點(diǎn)上的電流和電壓波形。尤其需要在布局之前先查看和了解開關(guān)電壓、時(shí)變電流和開關(guān)頻率的波形。
我們以MPS的降壓(buck)變換器MPQ4430為例進(jìn)行說明(見圖1)。降壓變換器MPQ4430集成了上管和下管FET,能夠提供高達(dá)3.5A的負(fù)載電流。
圖1: MPQ4430降壓變換器示例
在這個(gè)示例中,我們利用MPS的DC/DC在線設(shè)計(jì)師工具將MPQ4430穩(wěn)壓器設(shè)計(jì)為從12V降壓至3.3V,同時(shí)提供3A的最大負(fù)載電流。圖1中的開關(guān)節(jié)點(diǎn)以紅色標(biāo)記為VSW。請注意,本文中的“VSW”和“the SW 節(jié)點(diǎn)”都表示開關(guān)節(jié)點(diǎn),可互換使用。
圖2中顯示了在其開關(guān)節(jié)點(diǎn)上測得的開關(guān)電壓波形和電感電流波形。電壓波形以500kHz的頻率在12V和略低于0V的電壓之間切換,但上升/下降時(shí)間則在極低的納秒范圍以內(nèi)。如此大的dV/dt產(chǎn)生了噪聲頻譜高達(dá)數(shù)十至數(shù)百兆赫茲的強(qiáng)電場(E場)。
圖2: 降壓變換器的開關(guān)節(jié)點(diǎn)波形
由于降壓變換器在連續(xù)導(dǎo)通模式下工作,因此電感電流始終為正,并且永不會(huì)達(dá)到0A。電流在降壓變換器導(dǎo)通期間上升至約3.4A,在關(guān)斷周期中降至約2.6A。平均3A的電流提供給負(fù)載。 電感阻止了電流的快速變化,因此電流波形不會(huì)像開關(guān)電壓那樣具有陡峭的過渡邊沿。盡管dI / dt不太大,但在500kHz的開關(guān)頻率下仍存在紋波電流,會(huì)產(chǎn)生強(qiáng)時(shí)變磁場(H場)。對附近對該頻率范圍敏感的電路來說,該磁場可能造成潛在問題。
盡量縮短開關(guān)節(jié)點(diǎn)走線長度
開關(guān)節(jié)點(diǎn)走線需要在短距離內(nèi)承載相對較大的時(shí)變電流。電感應(yīng)該放置在非??拷€(wěn)壓器SW引腳的位置。接線越短,來自高dV / dt波形的高頻電場和來自電感紋波電流的低頻磁場耦合就越小。
圖3顯示了開關(guān)節(jié)點(diǎn)的路由示例,其中電感靠近穩(wěn)壓器放置。設(shè)計(jì)PCB布局時(shí),要注意在變換器和電感之間預(yù)留一個(gè)小的區(qū)域,以用于那些必須連接到開關(guān)節(jié)點(diǎn)的其他組件(例如小型自舉電容)。但布局原則是盡可能縮短SW的走線長度。
圖3:4層PCB上3A降壓變換器的開關(guān)節(jié)點(diǎn)布局
圖3顯示出自舉電容器的放置原則是使其最長邊垂直于SW走線。這樣可以減小SW引腳和電感之間不必要的距離。盡管電容將電感稍微推遠(yuǎn)了一點(diǎn),但仍可以實(shí)現(xiàn)大約3mm至4mm的超短走線。具體VSW走線長度取決于應(yīng)用和組件大小,在某些情況下可能會(huì)長于本示例。
確定開關(guān)節(jié)點(diǎn)走線尺寸以滿足電流需求
通常,從穩(wěn)壓器SW引腳到電感輸入側(cè)的走線要比PCB上的其他信號走線更寬一些。我們建議采用寬走線或覆銅,并滿足以下要求:
1. 銅厚度和走線寬度應(yīng)足夠,以滿足電流需求。
2. 走線長度應(yīng)盡可能短,以最大程度地減少與其他電路產(chǎn)生近場耦合。
SW節(jié)點(diǎn)走線寬度對于所需電感電流的處理至關(guān)重要。在上述的降壓變換器示例中,提供給電感的平均電流與平均輸出電流(3A)相同。設(shè)計(jì)工程師應(yīng)首先指定最大電流條件,然后將其用于估算SW節(jié)點(diǎn)的走線寬度。
在我們的設(shè)計(jì)示例中,假設(shè)一個(gè)4層PCB在頂層、底層和內(nèi)層使用了1盎司的銅(參見圖4)。 開關(guān)穩(wěn)壓器電路在頂層放置并路由,接地(GND)返回平面在頂層以下9.26密耳(約10密耳)的位置。我們可以通過許多現(xiàn)成的計(jì)算工具來確定電流導(dǎo)體的尺寸。這些工具可以在PCB CAD軟件或者PCB制造商的網(wǎng)站上找到。
圖4: 3A降壓變換器中采用的4層堆疊
如果設(shè)計(jì)的最大負(fù)載為3A,并需要將PCB的溫升控制在10°C以內(nèi),則通過計(jì)算可以得出,采用這種4層堆疊,50密耳的導(dǎo)體寬度應(yīng)可以承載接近3.5A的電流。因此,在該設(shè)計(jì)中,50密耳的開關(guān)節(jié)點(diǎn)走線寬度是一個(gè)較好的選擇,它可以提供高于3A最大負(fù)載的裕度。當(dāng)然,根據(jù)具體PCB的允許溫升可以做出不同的權(quán)衡。盡管走線尺寸與電感焊盤一樣寬很常見,但是從這個(gè)示例中我們可以看出,更窄的走線也完全能夠滿足電流和散熱的要求。
請注意,電流導(dǎo)體尺寸的計(jì)算應(yīng)遵循最新的IPC2152標(biāo)準(zhǔn),而不是老版本的IPC2221。這對多層PCB尤其重要?;贗PC2152的計(jì)算更加精確,而且考慮了PCB厚度、PCB導(dǎo)熱率、走線厚度以及走線到銅平面的距離等諸多因素。
SW節(jié)點(diǎn)的電場和磁場
開關(guān)節(jié)點(diǎn)走線由參考平面上方的PCB走線組成,可以看作是微帶線的超短版本,尤其是在高頻下。微帶線阻抗可控,在高速傳輸線應(yīng)用中用于數(shù)字、高速模擬和射頻(RF)信號的傳輸。盡管開關(guān)節(jié)點(diǎn)和微帶傳輸線在應(yīng)用中傳導(dǎo)的預(yù)期信號不同,但它們的幾何結(jié)構(gòu)對于時(shí)變電場和磁場仍表現(xiàn)出相似的特性。
圖5顯示了SW走線上的開關(guān)電壓和時(shí)變電流所產(chǎn)生的電場和磁場。SW走線(寬度w)放置在返回平面上方高度為h的位置。電場線從SW走線的頂部、底部和側(cè)面延伸出來。最強(qiáng)電場(尤其是在高頻下)集中在走線底部和邊緣最接近返回平面的位置。
圖5: 開關(guān)節(jié)點(diǎn)的電場和磁場
在高頻之下,電流出現(xiàn)在電場線終止于返回平面的地方。為了更好地控制電場并減少寄生近場耦合,應(yīng)盡可能縮短返回平面和SW走線之間的距離(h),并盡可能加大SW走線與周圍電路之間的距離。
SW走線中的紋波電流會(huì)在走線周圍產(chǎn)生時(shí)變磁場。來自磁場的磁通量可以通過電路的互感耦合到附近的敏感電路中。與電場類似,限制磁場的最佳方法是最小化h,使返回平面盡可能靠近SW走線,同時(shí)增加SW走線與周圍電路之間的距離??拷黃W節(jié)點(diǎn)放置一個(gè)專用的GND返回平面將能夠提供良好的磁場抑制能力。
結(jié)論
對任何開關(guān)穩(wěn)壓器或功率變換器電路,SW節(jié)點(diǎn)的布局都需要認(rèn)真對待。了解SW節(jié)點(diǎn)波形、確定合理的SW走線尺寸并制定策略最大程度地減少近場耦合,這些都非常重要。
首先,我們要充分了解開關(guān)電壓波形、電流波形和開關(guān)頻率。然后根據(jù)最大電流需求確定SW走線寬度,并盡可能縮短SW走線長度。最后,在SW節(jié)點(diǎn)、周圍的IC和電路之間留出足夠的間距,以最大程度地減少近場耦合。當(dāng)采用多層PCB堆疊時(shí),始終將GND返回平面直接置于SW走線下方,并確保走線盡可能靠近GND平面。這將進(jìn)一步降低來自SW節(jié)點(diǎn)的電場和磁場產(chǎn)生的近場耦合。
設(shè)計(jì)PCB布局時(shí),遵循上述原則將有助于實(shí)現(xiàn)更好的EMC設(shè)計(jì)!
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- 協(xié)同創(chuàng)新,助汽車行業(yè)邁向電氣化、自動(dòng)化和互聯(lián)化的未來
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- 用于模擬傳感器的回路供電(兩線)發(fā)射器
- 應(yīng)用于體外除顫器中的電容器
- 將“微型FPGA”集成到8位MCU,是種什么樣的體驗(yàn)?
- 能源、清潔科技和可持續(xù)發(fā)展的未來
- 博瑞集信推出高增益、內(nèi)匹配、單電源供電 | S、C波段驅(qū)動(dòng)放大器系列
技術(shù)文章更多>>
- 探索工業(yè)應(yīng)用中邊緣連接的未來
- 解構(gòu)數(shù)字化轉(zhuǎn)型:從策略到執(zhí)行的全面思考
- 意法半導(dǎo)體基金會(huì):通過數(shù)字統(tǒng)一計(jì)劃彌合數(shù)字鴻溝
- 使用手持頻譜儀搭配高級軟件:精準(zhǔn)捕獲隱匿射頻信號
- 為什么超大規(guī)模數(shù)據(jù)中心要選用SiC MOSFET?
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索