你的位置:首頁(yè) > EMC安規(guī) > 正文
反激同步整流對(duì)EMI的影響
發(fā)布時(shí)間:2021-09-08 來(lái)源:Siran Wang 責(zé)任編輯:wenwei
【導(dǎo)讀】過去十年間,移動(dòng)設(shè)備的快速發(fā)展讓手機(jī)應(yīng)用滲透到社會(huì)的方方面面。日常生活中,人們幾乎手機(jī)不離身。因此,大電池容量及快速充電速度成為手機(jī)最關(guān)鍵的殺手锏之一,這也對(duì)適配器提出了更高額定功率和更高功率密度的需求,且需求正呈指數(shù)級(jí)增長(zhǎng)。
如今,5V/1A 輸出規(guī)格的適配器早已過時(shí),新設(shè)計(jì)的輸出規(guī)格通常在2A 以上,輸出電壓更是高達(dá) 20V。長(zhǎng)久以來(lái),大部分手機(jī)市場(chǎng)領(lǐng)導(dǎo)者(如華為、Oppo 和Vivo),一直將大功率適配器作為配件隨附在手機(jī)包裝內(nèi)一同出售,這獲得了市場(chǎng)的積極反饋。而蘋果卻在2020 年的秋季新聞發(fā)布上,突然宣布取消附贈(zèng)標(biāo)準(zhǔn) 5V/1A手機(jī)適配器,這一變化催生了零部件市場(chǎng)大功率適配器需求的再次繁榮。
這些大功率手機(jī)適配器采用的最常用解決方案仍然是反激式拓?fù)洹H欢?,由于新的市?chǎng)趨勢(shì),采用 SR MOSFET 實(shí)現(xiàn)同步整流 (SR) 成為適配器設(shè)計(jì)方案的一大突破和創(chuàng)新。同步整流取代了傳統(tǒng)的肖特基二極管,成為適配器副邊主流解決方案。
同步整流基本原理
同步整流解決方案是采用 MOSFET 進(jìn)行輸出電流整流,相比于二極管相對(duì)固定的正向壓降來(lái)說,MOSFET 的壓降與電流和導(dǎo)通電阻成正比(見圖 1)。MOSFET 對(duì)整流的傳導(dǎo)功率損耗有很大影響。換句話說,通過選擇具有理想導(dǎo)通電阻的 SR MOSFET,SR 解決方案可以實(shí)現(xiàn)比傳統(tǒng)二極管解決方案更好的效率和散熱性能,而這正是大功率適配器設(shè)計(jì)最關(guān)鍵的需求。
圖1: MOSFET 和二極管之間的 I-V 特性差異
眾所周知,在副邊帶肖特基二極管的傳統(tǒng)反激式變換器應(yīng)用中,二極管的開關(guān)特性(尤其是反向恢復(fù)電流)對(duì) EMI 性能有顯著影響。因此在實(shí)際應(yīng)用中必須謹(jǐn)慎處理。但用同步整流MOSFET代替二極管后,情況就完全不同了,因?yàn)镸OSFET沒有理論上的反向恢復(fù)效應(yīng)。
然而,這并不一定意味著同步整流解決方案的 EMI 問題更少。相反,設(shè)計(jì)人員在設(shè)計(jì)帶 SR 的反激解決方案時(shí)應(yīng)更加謹(jǐn)慎,尤其是在EMI 噪聲源和耦合路徑方面。
同步整流對(duì)EMI噪聲源幅度的影響
要了解同步整流對(duì) EMI 噪聲源的影響,首先要詳細(xì)了解同步整流的工作原理。大多數(shù)控制器基于漏源電壓 (VDS) 的直接檢測(cè)來(lái)驅(qū)動(dòng) SR MOSFET,因?yàn)樗恍枰c原邊進(jìn)行通信且降低了總 BOM 成本。圖 2 顯示出SR MOSFET 的導(dǎo)通和關(guān)斷通常由兩個(gè)閾值來(lái)控制。它們都是負(fù)電壓閾值,可以確保 SR MOSFET 在反向偏置時(shí)始終安全關(guān)斷。
圖2: 反激SR解決方案的基本工作原理
由上圖可以看出,兩端的體二極管有很短的導(dǎo)通時(shí)間:剛好在器件導(dǎo)通之前和 SR MOSFET 關(guān)斷之后。因此,時(shí)序控制對(duì) SR 控制器來(lái)說至關(guān)重要,因?yàn)檫@兩個(gè)導(dǎo)通時(shí)間會(huì)引入額外的傳導(dǎo)損耗(時(shí)間越長(zhǎng)損耗越嚴(yán)重)。 而且,如果關(guān)斷時(shí)間過長(zhǎng),則可能會(huì)因?yàn)镸OSFET體二極管比較差的特性而導(dǎo)致SR關(guān)斷后出現(xiàn)嚴(yán)重的反向恢復(fù)電流。
圖 3 顯示了體二極管的反向恢復(fù)電流由于 SR 提前 400ns 關(guān)斷而上升到 9A,然后由于漏電感又導(dǎo)致 80V 高壓尖峰。眾所周知,EMI問題與噪聲源的脈沖幅度和斜率密切相關(guān)。這相當(dāng)于反激變換器副邊更強(qiáng)的 EMI 噪聲源。
圖3: SR 提前關(guān)斷導(dǎo)致的高尖峰電流和電壓
如果 SR 關(guān)斷太晚,也會(huì)出現(xiàn)類似問題。圖 4 顯示了在由于傳播和驅(qū)動(dòng)延遲導(dǎo)致電流反向之后SR關(guān)斷的結(jié)果。因?yàn)樵吅透边匨OSFET 同時(shí)導(dǎo)通,將導(dǎo)致短時(shí)間的直通。結(jié)果,負(fù)電流上升到高達(dá)10A,它會(huì)在 SR MOSFET 關(guān)斷后導(dǎo)致 87V的高壓尖峰。
圖4: SR關(guān)斷延遲引起的高尖峰電流和電壓
為了緩解這些問題,良好控制 SR 導(dǎo)通和關(guān)斷的時(shí)間至關(guān)重要。圖 5 顯示了MPS提供的一款快速關(guān)斷智能 SR 控制器,MP6908。作為反激式同步整流控制器的市場(chǎng)領(lǐng)導(dǎo)者,MP6908采用了目前業(yè)界最先進(jìn)的 SR 控制方案,其精密尖端的信號(hào)處理、專有柵極電壓調(diào)節(jié)功能和超快關(guān)斷速度實(shí)現(xiàn)了最佳的同步整流時(shí)序控制。
圖5: MPS MP6908 在反激方案中的典型應(yīng)用
通過控制導(dǎo)通和關(guān)斷時(shí)序,MP6908的電流和電壓(分別為 4A 和 62V)都只有一個(gè)相對(duì)較低的尖峰(見圖 6),這對(duì)降低 EMI 噪聲非常有效。
圖 6:MP6908 優(yōu)化的時(shí)序控制保證了低尖峰電流和電壓
SR 對(duì) CM 降噪效果的影響
市面上許多反激式同步整流解決方案都建議將 SR 放置在副邊繞組的低側(cè),因?yàn)?SR 控制器直接從輸出獲得偏置電源要簡(jiǎn)單得多。但傳統(tǒng)的肖特基二極管總是放在高側(cè),這說明這個(gè)位置也有其益處。事實(shí)上,在共模 (CM) 噪聲消除效果方面,反激式變換器中高側(cè)和低側(cè) SR 配置之間存在很大差異(參見圖 7)。
a) 采用低側(cè) SR 的 CM 噪聲耦合路徑
b) 采用高側(cè) SR 的 CM 噪聲耦合路徑
圖 7:高側(cè) SR 和低側(cè) SR 之間的比較
反激式變換器的每一側(cè)(原邊和副邊)都有一個(gè)主 CM 噪聲源,即開關(guān)器件和變壓器繞組連接在一起的位置(見圖 7)。
圖 7a 顯示了同步整流器放置在低側(cè)時(shí)的情況。原邊共模噪聲源和副邊共模噪聲源位于具有不同磁極的繞組末端。因此,兩個(gè)噪聲源的切換方向總是相反的。 由于兩個(gè)噪聲源位于變壓器的兩側(cè),因此每個(gè)噪聲源產(chǎn)生的 CM 噪聲具有累加效應(yīng),會(huì)產(chǎn)生更多噪聲。
圖 7b 顯示了當(dāng) SR 放置在高側(cè)時(shí),兩個(gè)噪聲源位于具有相同磁極的繞組末端。在這種情況下,兩個(gè)噪聲源的切換方向始終是相同的,兩者之間存在抵消作用。
基于以上對(duì) CM 噪聲耦合的分析,高側(cè) SR 配置在 EMI 性能方面比低側(cè)配置具有明顯的優(yōu)勢(shì)。在實(shí)際應(yīng)用設(shè)計(jì)中,高側(cè)和低側(cè)配置之間出現(xiàn) 3dB 或更大的差異也很常見。
結(jié)論
帶SR 的反激式適配器設(shè)計(jì)與帶肖特基二極管的傳統(tǒng)配置不同。采用同步整流解決方案的兩個(gè)主要目的是提高效率和散熱性能。但同時(shí)也需要考慮其他方面,例如 EMI 性能。
借助控制良好的反激式同步整流解決方案,設(shè)計(jì)人員可以實(shí)現(xiàn)更佳性能、更低的器件額定功率、更高的產(chǎn)品可靠性并能最大限度地降低 EMI 噪聲。與此同時(shí),MPS 的MP6908等器件內(nèi)部集成了一個(gè)高壓穩(wěn)壓器,無(wú)需任何外部電路即可提供自偏置電源。再配合以高側(cè) SR,不僅可以開發(fā)出更尖端的適配器設(shè)計(jì),還可以降低 BOM 成本,而且無(wú)需擔(dān)心EMI 問題。
來(lái)源:MPS
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- 協(xié)同創(chuàng)新,助汽車行業(yè)邁向電氣化、自動(dòng)化和互聯(lián)化的未來(lái)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- 用于模擬傳感器的回路供電(兩線)發(fā)射器
- 應(yīng)用于體外除顫器中的電容器
- 將“微型FPGA”集成到8位MCU,是種什么樣的體驗(yàn)?
- 能源、清潔科技和可持續(xù)發(fā)展的未來(lái)
- 博瑞集信推出高增益、內(nèi)匹配、單電源供電 | S、C波段驅(qū)動(dòng)放大器系列
技術(shù)文章更多>>
- 探索工業(yè)應(yīng)用中邊緣連接的未來(lái)
- 解構(gòu)數(shù)字化轉(zhuǎn)型:從策略到執(zhí)行的全面思考
- 意法半導(dǎo)體基金會(huì):通過數(shù)字統(tǒng)一計(jì)劃彌合數(shù)字鴻溝
- 使用手持頻譜儀搭配高級(jí)軟件:精準(zhǔn)捕獲隱匿射頻信號(hào)
- 為什么超大規(guī)模數(shù)據(jù)中心要選用SiC MOSFET?
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索