你的位置:首頁 > EMC安規(guī) > 正文
汽車零部件的EMI抗擾性測試方法
發(fā)布時(shí)間:2019-01-25 責(zé)任編輯:xueqi
【導(dǎo)讀】隨著車內(nèi)環(huán)境日益復(fù)雜,汽車廠商對部件測試的要求也越來越高。本文旨在通過介紹汽車電子部件EMI抗擾性測試的各種方法及其優(yōu)缺點(diǎn),幫助測試工程師正確選擇最佳的測試手段。
多年以來,電磁干擾(EMI)效應(yīng)一直是現(xiàn)代電子控制系統(tǒng)中備受關(guān)注的一個(gè)問題。尤其在今天的汽車工業(yè)中,車輛采用了許多關(guān)鍵的和非關(guān)鍵(critical and non-critical)的車載電子模塊,例如引擎管理模塊、防抱死系統(tǒng)、電子動力轉(zhuǎn)向功能模塊(electrical power steering functions)、車內(nèi)娛樂系統(tǒng)和熱控制模塊。
同時(shí),車輛所處的電磁環(huán)境也更加復(fù)雜。車上的電子元件必須與射頻發(fā)射機(jī)共存,這些發(fā)射機(jī)有些安裝和設(shè)置得比較恰當(dāng)(例如應(yīng)急服務(wù)車輛中),有些卻并非如此(例如一些出廠后安裝的CB發(fā)射器和車載移動電話)。此外,車輛還可能進(jìn)入一些外部發(fā)射機(jī)產(chǎn)生的強(qiáng)電磁場區(qū)域,強(qiáng)度可達(dá)幾十甚至幾百福特每米。汽車業(yè)在多年前就已意識到這些問題,所有著名廠商都已采取一定措施,通過制定測試標(biāo)準(zhǔn)和立法要求,力圖借此減少電磁干擾的影響。因此,今天的車輛對這種干擾都具備了較強(qiáng)的抵抗能力。但EMI對車載模塊的性能影響非常大,因此必須繼續(xù)對其保持警惕。
車輛及其部件的測試是一個(gè)高度專業(yè)的領(lǐng)域,一向由廠商自己完成。在有些國家,許多車輛廠商會共同資助那些專業(yè)的測試實(shí)驗(yàn)室。隨著車輛中使用的子部件日益增多,汽車廠商將部件外包的趨勢也日趨明顯,因此,EMC測試開始逐漸變成部件廠商的責(zé)任。在諸如ISO 11452 (國際標(biāo)準(zhǔn)化組織) 和 SAE J1113 (汽車工程師協(xié)會)等汽車部件抗擾性測試國際標(biāo)準(zhǔn)的子章節(jié)中,都描述了頻率存在重疊的多種不同測試方法和測試級別。在沒有任何更高的立法要求時(shí),車輛廠商們就可以在這些通用標(biāo)準(zhǔn)的基礎(chǔ)上制定其測試要求。即當(dāng)某汽車廠商欲為其部件供應(yīng)商制定部件級別的測試要求時(shí),他可以從包含多種測試方法、測試頻率范圍和測試級別的清單上選擇合適的款項(xiàng)來構(gòu)成他自己的測試標(biāo)準(zhǔn)。最終,一個(gè)為多家汽車廠商提供子部件的廠家就有可能必須根據(jù)不同的標(biāo)準(zhǔn),采用不同的方法,在同一個(gè)頻率范圍內(nèi)測試同樣的部件。
為了滿足客戶的測試需求,部件廠商可以采用一系列針對ISO 11452 和SAE J1113中包含的RF測試規(guī)范而設(shè)計(jì)的汽車部件測試系統(tǒng)來幫助完成工作。這些測試系統(tǒng)通常都是自含(self-contained)系統(tǒng),遵循所有標(biāo)準(zhǔn)中規(guī)定的最高級別測試規(guī)范。采用這樣的系統(tǒng)之后,部件廠商在對多個(gè)標(biāo)準(zhǔn)進(jìn)行測試時(shí),用到的許多測試儀器都是相同的,因而能節(jié)省大量資金。以下我們將討論幾種RF測試方法和汽車廠商測試需求中所規(guī)定的一些測試參數(shù),并探討部件廠商怎樣才能根據(jù)不同客戶的測試需求搭建相應(yīng)的測試系統(tǒng),達(dá)到只測試需要項(xiàng)目的目的。
幾種RF測試方法
要想測試一個(gè)汽車部件的RF抗擾性,必須通過一種與車內(nèi)干擾出現(xiàn)方式相當(dāng)?shù)姆绞较蚱涫┘覴F干擾。這就引入了第一個(gè)變量。汽車可能會暴露在一個(gè)外場中,也可能攜帶有會產(chǎn)生干擾信號的發(fā)射機(jī)和天線,但無論如何,干擾場都可以直接作用于部件所處的位置。例如,當(dāng)該部件安裝在儀表盤上或附近的開放式區(qū)域時(shí),它所產(chǎn)生的干擾就比當(dāng)它被安裝在車輛底盤附近甚或是在引擎箱內(nèi)這樣的屏蔽區(qū)時(shí)造成的危害要大得多。另一方面,為了供電和信號連接的需要,所有電子模塊都連到車輛的配線系統(tǒng)。
而配線裝置相當(dāng)于一個(gè)有效的天線,能夠與RF干擾耦合,不論部件安裝在什么地方,RF電流都可能通過其接插件傳導(dǎo)到部件中。鑒于此,我們通常采用的測試方法有兩組:輻射干擾測試和傳導(dǎo)干擾測試。
輻射干擾測試
所有的輻射測試法都不外向被測裝置施加一個(gè)強(qiáng)度得到校準(zhǔn)的RF場,這樣,就能將RF電流和電壓引入裝置的內(nèi)部結(jié)構(gòu),然后這些RF電流和電壓又會出現(xiàn)在有源器件的敏感節(jié)點(diǎn)上,從而在電子線路中造成干擾。不同方法在施加RF場的方式上有所不同,它們各有其優(yōu)、缺點(diǎn)和局限性。
微波暗室中的輻射天線測量法
最簡單明了的產(chǎn)生RF場的方法就是向一個(gè)天線灌入能量,并將其指向被測設(shè)備(EUT)。天線能夠?qū)F能量轉(zhuǎn)化為一個(gè)輻射場,并使其充滿測試區(qū)域。由于需要在很寬的頻譜范圍內(nèi)產(chǎn)生高電平的RF信號,為了避免與附近的其他合法無線電用戶相互干擾,測試應(yīng)該在一個(gè)屏蔽室中進(jìn)行。但這會引入墻壁的反射,從而改變室內(nèi)的場分布。為解決這一問題,需要對屏蔽室的表面進(jìn)行電波消聲處理,創(chuàng)造一個(gè)“吸波室(absorber lined chamber)”環(huán)境,而這又會極大增加測試設(shè)備的成本。測試時(shí)使用的天線在被測頻率范圍內(nèi)應(yīng)該具有較寬的頻率響應(yīng)。車輛測試中的測試頻率可能從10kHz到18GHz,因此需要的天線也有許多種不同的類型。此外,加之于EUT上的場也應(yīng)該盡可能均勻并且受到良好控制。測試時(shí)的場可能會影響暗室的規(guī)格,因此天線不能離EUT過近,方向性也不能太強(qiáng),否則產(chǎn)生的場會只集中于EUT的某一個(gè)區(qū)域。同時(shí),天線和EUT距離過近還會導(dǎo)致二者互感增大,從而加大天線上所加信號的控制難度。被測對象的物理尺寸越大,這一距離要求就越難滿足。另外,根據(jù)公式P = (E · r)2/30 watts(當(dāng)天線具備單元增益時(shí)),天線離EUT越遠(yuǎn),達(dá)到某個(gè)給定場強(qiáng)時(shí)需要的功率就越大。
注意,該公式給出的是場強(qiáng)和距離的平方率關(guān)系,即當(dāng)某個(gè)給定距離上的場強(qiáng)從10 V/m增大到20 V/m時(shí),需要的功率是原來的4倍,或者說當(dāng)場強(qiáng)從10 V/m增大到20 V/m時(shí),在給定功率下,距離只有原來的四分之一。EUT位置處的場強(qiáng)通過一個(gè)各向同性的寬帶場傳感器來測量,各向同性是為了保證傳感器對方向不敏感,而寬帶則是為了保證它在不同頻率下均能得到正確的測量值。
TEM單元法
根據(jù)ISO 11452-3和 SAE J1113/24中的規(guī)定,TEM單元只是一段簡單的封閉傳輸線,在其一端饋入一定的RF功率,并在另一端接一個(gè)負(fù)載阻抗。隨著傳輸線中電磁波的傳播,導(dǎo)體間就建立起一個(gè)電磁場。TEM(即橫電磁波)描述的是在這類單元的作用區(qū)域內(nèi)產(chǎn)生的占主導(dǎo)地位的電磁場。當(dāng)傳輸線長度給定時(shí),在一定的截面積上,場強(qiáng)均勻,且易測量或計(jì)算。EUT就放置在TEM單元的作用區(qū)域內(nèi)。TEM單元一般呈箱體形式,內(nèi)帶一個(gè)隔離面,箱體的墻面作為傳輸線的一端,隔離面(或稱隔膜,septum)作為另一端。TEM單元的幾何構(gòu)造對傳輸線的特性阻抗有決定性的影響。箱體是封閉的,除了很小的泄漏以外,單元外沒有電磁場,因此這種單元可以不加外屏蔽地應(yīng)用于任何環(huán)境。其主要缺點(diǎn)是其存在頻率上限,這一上限頻率與其物理尺寸稱反比。當(dāng)頻率高于此上限時(shí),其內(nèi)部電磁場的結(jié)構(gòu)中開始出現(xiàn)高次模,場的均勻性,尤其是在由TEM單元的確切尺寸決定的諧振頻率處的場均勻性,也開始變差。TEM單元能夠測量的最大EUT尺寸受其內(nèi)部可用的場強(qiáng)均勻區(qū)域體積的限制,因此最大EUT尺寸和該單元可測的最高頻率之間有著直接關(guān)系。TEM單元的最低測量頻率可到DC,這也是它與輻射天線測量法的不同之處。
帶狀線法和三平面法
這兩種方法與TEM單元法有本質(zhì)的區(qū)別。TEM單元法屬于封閉型測量方法,而帶狀線法和三平面法所采用的測試裝置則是開放式傳輸線。也就是說,在采用這兩種方法時(shí),最大場雖然位于平面之間,但仍有能量輻射到測試裝置外部,因此測試必須在一間屏蔽室內(nèi)進(jìn)行。ISO 11452-5 和 SAE J1113/23中均對帶狀線測試有所描述,而三平面測試只在 SAE J1113/25中提到。
在帶狀線測試中,被測部件模塊只對連接它與相關(guān)設(shè)備的電纜裝置暴露,并不暴露在平面間的最大場強(qiáng)處。帶狀線平面作為傳輸線的源導(dǎo)體,其下放置1.5米的電纜裝置,測試的參考地平面則作為另一端導(dǎo)體。帶狀線產(chǎn)生的場會在電纜裝置中感應(yīng)出經(jīng)向電流,然后耦合入EUT。因此,帶狀線測試幾乎算是輻射場測試和傳導(dǎo)測試這兩種方法的混合。
三平面測試裝置中,一個(gè)有源內(nèi)導(dǎo)體被兩個(gè)外平面夾在中間,產(chǎn)生的阻抗可通過計(jì)算得到。被測模塊放置于中心導(dǎo)體和一個(gè)外平面之間,中心導(dǎo)體的另一面置空。由于整個(gè)測試裝置的結(jié)構(gòu)是對稱的,因此可在置空的這一面與EUT呈鏡像位置的地方放置一個(gè)場強(qiáng)探頭。和TEM單元測試一樣,帶狀線測試和三平面測試裝置均有一個(gè)受其尺寸限制的頻率上限。在等于或高于由該理尺寸決定的諧振頻率時(shí),就會產(chǎn)生不受控制的電磁場高次模。這三種方法相對于輻射天線法的優(yōu)勢就在于,采用這三種方法時(shí),只需要不多的功率就能夠產(chǎn)生比輻射天線法大得多的場強(qiáng),因?yàn)閳鰪?qiáng)等于導(dǎo)體平面之間的電壓除以它們之間的距離。
傳導(dǎo)干擾測試
第二類測試方法叫做傳導(dǎo)干擾測試,它不需在被測模塊放置之處施加電磁場,而是直接將RF干擾施加在電纜裝置或接入被測部件模塊的裝置中。這樣一來,隨著RF電流在電路結(jié)構(gòu)(例如一塊印制電路板PCB)中傳輸,部件模塊與外部裝置的連接處就會產(chǎn)生一個(gè)電流,從而在電子線路中造成干擾。這種方法與輻射場測試法雖然結(jié)果類似,但二者之間沒有任何等同之處,因此這兩種方法都常用于進(jìn)行完整測試,有時(shí)兩種測試的頻率范圍還有重疊。傳導(dǎo)干擾測試最常采用的兩種耦合方法有電流注入法(bulk current injection,BCI)和直接注入法,前者需要向EUT中注入干擾電流,并控制注入電流的大小,后者則注入功率并控制注入功率的大小。
電流注入法(BCI)
BCI法在ISO 11452-4和SAE J1113/4中均有描述,采用該方法時(shí),將一個(gè)電流注入探頭放在連接被測件的電纜裝置之上,然后向該探頭注入RF干擾。此時(shí),探頭作為第一電流變換器,而電纜裝置作為第二電流變換器,因此,RF電流先在電纜裝置中以共模方式流過(即電流在裝置的所有導(dǎo)體上以同樣的方式流通),然后再進(jìn)入EUT的連接端口。
真正流過的電流由電流注入處裝置的共模阻抗決定,而在低頻下這幾乎完全由EUT和電纜裝置另一端所連接的相關(guān)設(shè)備對地的阻抗決定。一旦電纜長度達(dá)到四分之一波長,阻抗的變化就變得十分重要,它可能降低測試的可重復(fù)性。此外,由于電流注入探頭會帶來損耗,因而需要較大的驅(qū)動能力才能在EUT上建立起合理的干擾水平。盡管如此,BCI法還是有一個(gè)很大的優(yōu)點(diǎn),那就是其非侵入性,因?yàn)樘筋^可以簡單地夾在任何直徑不超過其最大可接受直徑的電纜上,而不需進(jìn)行任何直接的電纜導(dǎo)體連接,也不會影響電纜所連接的工作電路。
直接注入法
BCI法對驅(qū)動能力要求過高,而且在測試過程中與相關(guān)設(shè)備的隔離也不好,直接注入法的目的就是克服BCI法的這兩個(gè)缺點(diǎn)。具體做法是將測試設(shè)備直接連接到EUT電纜上,通過一個(gè)寬帶人工網(wǎng)絡(luò)(Broadband Artificial Network,BAN)將RF功率注入EUT電纜,而不干擾EUT與其傳感器和負(fù)載的接口(見圖3),該BAN在測試頻率范圍內(nèi)對EUT呈現(xiàn)的RF阻抗可以控制。BAN在流向輔助設(shè)備的方向至少能夠提供500W的阻塞阻抗。干擾信號通過一個(gè)隔直電容,直接耦合到被測線上。ISO 11452-7和SAE J1113/3中描述了該方法。
汽車部件EMI測試的測試參數(shù)
在車輛部件的EMI測試中,根據(jù)不同車輛廠商所提出的不同要求,除了引入干擾信號的基本方法有所不同以外,還有許多參數(shù)也會有所不同。但不論RF干擾怎樣產(chǎn)生,這些參數(shù)都是相關(guān)的。
頻率范圍
受測試方法本身及其所用換能器(transducer)的限制,上述的每一種方法都只適用于一個(gè)既定的頻率范圍。列出了本文中討論的各種方法在相應(yīng)標(biāo)準(zhǔn)中公布的適用頻率范圍。測試過程中,通常需要使測試信號在整個(gè)頻率范圍內(nèi)掃描變化或步進(jìn)變化,監(jiān)測此時(shí)EUT與其應(yīng)有功能和性能的差異來得到測試結(jié)果。每次測試的最小滯留時(shí)間一般為2秒,如果EUT的時(shí)間常數(shù)較大,滯留時(shí)間可能更長。如果采用軟件控制的測試信號發(fā)生器,那么測試信號通常不是掃描過整個(gè)頻率范圍,而是采用步進(jìn)方式,因此還要定義頻率步進(jìn)的步長。滯留時(shí)間和頻率步長二者共同決定了執(zhí)行單次掃描所需花費(fèi)的時(shí)間,從而也決定了整個(gè)測試所需的時(shí)間。
幅度控制
不論采用哪種測試方法,對施加在EUT上的測試信號幅度都必須小心控制。幅度控制的方法按照原理不同通??煞譃閮深?,一類叫閉環(huán)控制法,一類叫開環(huán)控制法。在帶狀線測試和TEM單元測試時(shí),可以通過已知的凈輸入功率和傳輸線的參數(shù)來計(jì)算得到的場。但除了這兩種方法以外,都需要利用閉環(huán)法來實(shí)現(xiàn)幅度控制。在輻射干擾測試中,干擾信號的單位采用伏特/米(volts/meter),在電流注入測試中,單位采用微安(milliamps),在直接功率注入測試中,單位采用瓦特(watts)。
閉環(huán)法
采用閉環(huán)控制法時(shí),一個(gè)場強(qiáng)儀或電流監(jiān)控探頭一直監(jiān)測著施加在EUT上的激勵(lì),據(jù)此將功率調(diào)整到目標(biāo)值。該方法存在一個(gè)問題,那就是EUT的介入打亂了我們用作干擾激勵(lì)的電磁場,因此找不到一個(gè)能夠正確反映出我們得到的場強(qiáng),并對所有類型EUT普遍適用的位置來放置場強(qiáng)儀,在微波暗室中進(jìn)行輻射干擾測試時(shí)這一問題尤其明顯。當(dāng)測試頻率使得EUT尺寸與波長可以相比擬時(shí),在某些位置上場的分布可能會出現(xiàn)大幅下降。如果場強(qiáng)儀剛好放置在一個(gè)這樣的位置上,那么當(dāng)我們根據(jù)場強(qiáng)儀的讀數(shù)來維持需要的電磁場強(qiáng)度時(shí),勢必會在EUT附近的位置上造成嚴(yán)重的過測(over-testing)。BCI測試中也存在類似問題,當(dāng)EUT的共模輸入阻抗與測試信號諧振時(shí),要維持需要的電流就會造成過測(over-testing)。實(shí)際上,在這樣的環(huán)境下,許多時(shí)候放大器都無法提供維持規(guī)定電平所需的功率,而一旦放大器過載,還會造成更多的測試問題。
開環(huán)法
采用開環(huán)法就能回避上述問題。開環(huán)法有時(shí)也叫做置換法。采用開環(huán)法時(shí),首先將一個(gè)既定強(qiáng)度的信號送入測試設(shè)備進(jìn)行校準(zhǔn)設(shè)置。在每個(gè)頻率上,放大器的輸出功率均受一個(gè)輔助功率計(jì)的監(jiān)控,當(dāng)放大器輸出電平達(dá)到目標(biāo)值時(shí),對其進(jìn)行記錄。最后,在真實(shí)測試時(shí),再將這個(gè)預(yù)校準(zhǔn)的功率記錄進(jìn)行嚴(yán)格的重放??偟膩碚f,由于對施加在EUT上的場或電流(volts per meter 或 milliamps)的測量并不在測試的要求內(nèi),因此開環(huán)法并不測量它們,只是對其進(jìn)行監(jiān)控,以確認(rèn)系統(tǒng)工作正常。但由于上節(jié)談到的原因,我們也不可能看到真正正確的測量值。在輻射干擾測試中,校準(zhǔn)設(shè)置過程要求在EUT于微波暗室中應(yīng)占據(jù)的準(zhǔn)確位置上放置一臺場強(qiáng)儀。而在傳導(dǎo)干擾測試中,校準(zhǔn)設(shè)備是一個(gè)阻抗值給定的負(fù)載,我們在其兩端測量功率或電流。開環(huán)法所用到的功率參數(shù)包括凈功率,或者輸入換能器的前向功率和換能器反射回來的反向功率之差。在假設(shè)沒有其他重大損耗時(shí),這個(gè)差值就等于真正送入EUT的功率。因此,在采用直接耦合器時(shí),必須在每個(gè)頻率上測量兩個(gè)功率。這時(shí),可以利用一臺功率計(jì)對耦合器的前向輸出和反向輸出分別順序測量,也可以利用兩臺功率計(jì)同時(shí)測量。凈功率用于說明換能器的電壓駐波比(VSWR),因?yàn)楫?dāng)引入EUT時(shí)VSWR會發(fā)生變化。但當(dāng)EUT與測試裝置嚴(yán)格匹配時(shí),要保持凈功率所需的前向功率相對于校準(zhǔn)所需的功率可能有較大變化。為避免過測,為保持所需凈功率而增大的前向功率不能超過2dB,即使2dB還不能滿足要求,也不應(yīng)繼續(xù)增大,而只能將此記錄在測試報(bào)告中。
調(diào)制頻率和調(diào)制深度
所有的RF抗擾性測試都需要在每個(gè)頻率上對EUT施加CW(未調(diào)連續(xù)波)和已調(diào)AM信號,而EUT的響應(yīng)通常更易受已調(diào)干擾影響。一般情況下,測試標(biāo)準(zhǔn)中所規(guī)定的調(diào)制信號都是調(diào)制深度為80%,頻率為1kHz的正弦波。但也有個(gè)別的車輛廠商可能會有不同的要求。定義調(diào)制參數(shù)的目的是為AM和CW測試規(guī)定一個(gè)恒定的峰值電平。這一點(diǎn)與商用(IEC 61000-4 系列)RF抗擾性測試不同。在商用RF抗擾性測試中,調(diào)制信號的峰值功率比未調(diào)信號高5.3 dB。而在峰值電平恒定的測試中調(diào)制深度為80%的已調(diào)信號功率只有未調(diào)信號功率的0.407倍。ISO 11452中清楚地定義了這種信號的施加過程:
●在每個(gè)頻點(diǎn)上,線性或?qū)?shù)增大信號強(qiáng)度直到信號強(qiáng)度滿足要求(對開環(huán)法指凈功率滿足要求,對閉環(huán)法則指測試信號的電平嚴(yán)格滿足要求),根據(jù) 2 dB準(zhǔn)則監(jiān)測前向功率。
●按要求施加已調(diào)信號,并使測試信號保持時(shí)間等于EUT最小響應(yīng)時(shí)間。
●緩慢降低測試信號強(qiáng)度,然后進(jìn)行下一個(gè)頻率的測試。
監(jiān)測EUT
在施加測試信號時(shí),必須監(jiān)測EUT的響應(yīng),并與其應(yīng)達(dá)到的性能準(zhǔn)則進(jìn)行比較,以確定被測件是否通過測試。由于不同EUT的功能和需要滿足的性能準(zhǔn)則均不相同,因此本文不可能對這些監(jiān)控方法進(jìn)行概括。但如果測試軟件能夠自動完成部分或全部監(jiān)測工作,那么整個(gè)測試就會更加簡單可靠。監(jiān)測過程可能只需簡單地測量和記錄每個(gè)頻率點(diǎn)上的輸出電壓,也可能涉及一些特殊的EUT軟件,這些軟件能夠在測試發(fā)現(xiàn)錯(cuò)誤時(shí)給出標(biāo)記。
報(bào)告測試結(jié)果
在測試完成,EUT的響應(yīng)也觀測完畢之后,測試工程師的工作還只完成了一半。接著他或她還必須按照車輛廠商所規(guī)定的格式創(chuàng)建測試報(bào)告。一個(gè)部件廠商可能為多個(gè)車輛廠商提供產(chǎn)品,因此對同一組測試,部件廠商可能需要提交多種格式的測試報(bào)告。有些軟件包中包含可選的報(bào)告生成模塊,能夠提供針對不同的車輛廠商定制的標(biāo)準(zhǔn)報(bào)告模板。雖然測試工程師們大都很享受測試過程,卻很少有人喜歡撰寫測試報(bào)告,因此所有測試實(shí)驗(yàn)室的經(jīng)理都十分明白,為客戶提供測試報(bào)告是一項(xiàng)最困難的任務(wù)。有了自動報(bào)告生成軟件模塊,不但測試工程師們不必再承擔(dān)撰寫測試報(bào)告的苦差,客戶的要求也能更快得到滿足。綜上所述,雖然汽車工業(yè)中的部件EMC測試中包含許多可變參數(shù),我們?nèi)匀豢梢愿咝У赝瓿舍槍Σ煌囕v廠商的覆蓋很寬頻率范圍的測試。本文介紹了汽車工業(yè)中部件測試所采用的多種方法,并概括了各種方法的優(yōu)缺點(diǎn),通過閱讀本文,測試工程師可以更好的選擇測試方法,以滿足客戶的需求。
特別推薦
- 貿(mào)澤與Cinch聯(lián)手發(fā)布全新電子書深入探討惡劣環(huán)境中的連接應(yīng)用
- 自耦變壓器的構(gòu)造和操作
- 電感器輸出,運(yùn)算放大器輸入:二階有源濾波器簡介
- ESR 對陶瓷電容器選擇的影響(上)
- 步進(jìn)電機(jī)中的脈寬調(diào)制與正弦控制
- 基于射頻無線電力傳輸供電的無電池資產(chǎn)跟蹤模塊的先進(jìn)監(jiān)控系統(tǒng)
- ESR 對陶瓷電容器選擇的影響(下)
技術(shù)文章更多>>
- 深化綠色承諾,ST與彭水共繪可持續(xù)發(fā)展新篇章
- 基于SiC的高電壓電池?cái)嚅_開關(guān)的設(shè)計(jì)注意事項(xiàng)
- 如何更好對微控制器和輸出外設(shè)進(jìn)行電氣隔離?
- 意法半導(dǎo)體公布2024年第四季度及全年財(cái)報(bào)和電話會議時(shí)間安排
- IGBT 模塊在頗具挑戰(zhàn)性的逆變器應(yīng)用中提供更高能效
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
撥動開關(guān)
玻璃釉電容
剝線機(jī)
薄膜電容
薄膜電阻
薄膜開關(guān)
捕魚器
步進(jìn)電機(jī)
測力傳感器
測試測量
測試設(shè)備
拆解
場效應(yīng)管
超霸科技
超級本
超級電容
車道校正
車身控制
車載以太網(wǎng)
車載娛樂
充電
充電電池
充電器
充電樁
觸控屏
觸控顯示
觸摸開關(guān)
傳感技術(shù)
傳感器
傳感器模塊