放大器Vos失調(diào)電壓的產(chǎn)生與影響
發(fā)布時(shí)間:2020-09-11 責(zé)任編輯:lina
【導(dǎo)讀】放大器的失調(diào)電壓是工程師在直流耦合電路設(shè)計(jì)中,評(píng)估頻次極高的參數(shù),本篇通過(guò)一個(gè)案例介紹失調(diào)電壓的影響方式,以及探討產(chǎn)生原因。
放大器的失調(diào)電壓是工程師在直流耦合電路設(shè)計(jì)中,評(píng)估頻次極高的參數(shù),本篇通過(guò)一個(gè)案例介紹失調(diào)電壓的影響方式,以及探討產(chǎn)生原因。
01 由失調(diào)電壓導(dǎo)致故障的一則案例
2019 年 8 月 11 日(星期日)晚,筆者接到負(fù)責(zé)電源領(lǐng)域同事的信息,一家上市公司在汽車電子領(lǐng)域首款產(chǎn)品的小批量生產(chǎn)測(cè)試中出現(xiàn)異常,其中使用 ADI 放大器設(shè)計(jì)的電路發(fā)生“失效”問(wèn)題,急需申請(qǐng)失效分析。8 月 12 日上午現(xiàn)場(chǎng)拜訪該企業(yè),工程師講述電路設(shè)計(jì)不存在問(wèn)題,并且通過(guò) ADI 官方指定渠道購(gòu)買 15 片 ADA4851-1,其中 2 片芯片所在的板卡出現(xiàn)“失效”,將“失效”板卡中 ADA4851-1 芯片與正常工作板卡的 ADA4851-1 芯片進(jìn)行互換,“失效”現(xiàn)象跟隨“異常芯片”繼續(xù)復(fù)現(xiàn),因此要求進(jìn)行失效分析。
面對(duì)上述問(wèn)題的現(xiàn)象描述,筆者無(wú)法定位問(wèn)題的根源。與項(xiàng)目組負(fù)責(zé)人詳細(xì)了解電路圖和測(cè)試過(guò)程。如圖 2.7,使用 ADA4851-1 組建差動(dòng)放大電路,電路由+5V 單電源供電,TP1000 網(wǎng)絡(luò)由參考電壓源提供。工作中在輸入端 TP1001 網(wǎng)絡(luò)與 TP1006 網(wǎng)絡(luò)連接到地時(shí),如果 ADA4851-1 的輸出端(TP1011 網(wǎng)絡(luò))電壓超出±38.7mV 時(shí),系統(tǒng)判定電路出現(xiàn)異常并終止工作,上述 2 片“異常芯片”的輸出電壓均超過(guò)±38.7mV。
圖 2.7ADA4851-1 應(yīng)用電路
參考 ADA4851-1 的電氣參數(shù)進(jìn)行分析,如圖 2.8。在 25℃環(huán)境中,+5V 供電,電路增益為 1 時(shí),輸入失調(diào)電壓的典型值為 0.6mV ,最大值為 3.4mV。
圖 2.8 ADA4851-1 輸入失調(diào)電壓
假定圖 2.7 中的比例電阻完全匹配,即 R1000 與 R1010 為 220Ω,R1001 與 R1011 為 12KΩ。該差動(dòng)放大電路的增益為 54.4 倍。輸入失調(diào)電壓經(jīng)過(guò)放大后的輸出應(yīng)為 32.7mV(典型值)時(shí)電路正常工作,但是失調(diào)電壓最大值對(duì)應(yīng)的輸出值為 185.5mV,已經(jīng)超出判定故障的閾值電壓。并且在+5V 電壓供電時(shí),ADA4851-1 失調(diào)電壓的分布如圖 2.9,輸入失調(diào)電壓為±1mV 的情況出現(xiàn)頻次較高,此時(shí)對(duì)應(yīng)的輸出電壓為±54.4mV,同樣超出系統(tǒng)判定的閾值電壓。
圖 2.9 ADA4851-1 輸入失調(diào)電壓分布
所以筆者與工程師確認(rèn),現(xiàn)有 ADA4851-1 應(yīng)用電路的輸出電壓折算到輸入端,均在數(shù)據(jù)手冊(cè)參數(shù)范圍內(nèi),工作不存在失效問(wèn)題,該電路的軟件判定閾值設(shè)計(jì)不合理,建議整改辦法包括:
(1)調(diào)整判定故障的閾值電壓。
(2)使用低失調(diào)電壓的放大器,并類比 ADA4528,在 25℃環(huán)境中,+5V 供電時(shí),失調(diào)電壓最大值僅為 2.5uV 如圖 2.10。失調(diào)電壓的分布更為集中,如圖 2.11。
圖 2.10 ADA4528-1 電調(diào)電壓
圖 2.11 ADA4528-1 失調(diào)電壓分布
通過(guò)該案例可見(jiàn),失調(diào)電壓的存在,導(dǎo)致電路輸出產(chǎn)生直流誤差。
02 失調(diào)電壓與漂移定義
如圖 2.12(a)為放大器模型,短路放大器的兩個(gè)輸入端(Vp、Vn),如果是理想放大器其輸出電壓 Vo 應(yīng)為 0V。但是,真實(shí)放大器內(nèi)部處理 Vp 與 Vn 的輸入級(jí)存在失配,導(dǎo)致放大器的輸出不為 0V。為了使真實(shí)放大器的輸出實(shí)現(xiàn) 0V,需要在輸入管腳之間增加適合的校正電壓,稱為失調(diào)電壓(Offset voltage,Vos)。
如圖 2.12(b),真實(shí)放大器的電壓傳遞曲線(VTC)不會(huì)過(guò)原點(diǎn),它向左移還是右移由失配的方向決定??梢岳斫鉃樵诶硐牖驘o(wú)失調(diào)電壓放大器的一個(gè)輸入端串聯(lián)一個(gè)小電壓源 Vos,其電壓傳遞曲線如式 2-1。
為了實(shí)現(xiàn)輸出電壓為 0V,需要滿足式 2-2。
所以放大器的兩個(gè)輸入端電壓關(guān)系是近似相等,即“虛短”原則。Vos 的取值范圍在毫伏到微伏。
圖 2.12 具有失調(diào)電壓的放大器模型和電壓傳遞曲線
對(duì)于某個(gè)放大器的失調(diào)電壓是確定值,但是放大器會(huì)因?yàn)闇囟?、工作時(shí)間變化,使輸入失調(diào)電壓產(chǎn)生隨其變化量比值的變化,該比值稱為失調(diào)電壓漂移(Offset Voltage Drift)。
(1)變量為溫度,單位是μV/℃,表示輸入失調(diào)電壓的變化量與導(dǎo)致該變化的溫度變化量的比值。數(shù)據(jù)手冊(cè)提供的參數(shù)為測(cè)量溫度范圍內(nèi)的平均值,符號(hào)為ΔVOS/ΔT,或者 dVOS/dT。
考慮溫度漂移的失調(diào)電壓,為式 2-3。
如圖 2.2,以 ADA4077-1 SOIC 封裝 B 級(jí)芯片為例,在 25℃環(huán)境中,供電電壓為±15V,失調(diào)電壓最大值為 35μV,失調(diào)電壓漂移最大值為 0.25μV/℃。當(dāng)芯片溫度上升到 75℃時(shí),將參數(shù)代入式 2-3 計(jì)算失調(diào)電壓變化為 47.5μV。
圖 2.2 ADA4077 失調(diào)電壓與溫漂
(2)變量為時(shí)間,單位是μV/Mo,表示失調(diào)電壓每月變化多少微伏。代表放大器在長(zhǎng)期工作中失調(diào)電壓的穩(wěn)定性。
如圖 2.18,ADA4077 數(shù)據(jù)手冊(cè)提供實(shí)測(cè) 10000 小時(shí)失調(diào)電壓漂移。工程師以此模擬系統(tǒng)長(zhǎng)期運(yùn)行,可以評(píng)估在設(shè)備長(zhǎng)期工作中放大器失調(diào)電壓的穩(wěn)定情況。
失調(diào)電壓漂移是放大器電路設(shè)計(jì)中難以處理的參數(shù),因?yàn)樗拇嬖陔S時(shí)會(huì)產(chǎn)生新的失調(diào)電壓,所以常見(jiàn)的處理方法是使用失調(diào)電壓漂移參數(shù)小的放大器。
圖 2.18 ADA4077 實(shí)測(cè) 10000 小時(shí)的失調(diào)電壓長(zhǎng)期漂移
03 失調(diào)電壓產(chǎn)生原因
(1)輸入級(jí)的制造工藝
放大器輸入失調(diào)電壓的產(chǎn)生,主要由于輸入級(jí)對(duì)稱三極管晶圓的不匹配所導(dǎo)致。如圖 2.13,三極管(Q1,Q2)的匹配度,在一定范圍內(nèi)和晶圓面積的平方根成正比,就是說(shuō)匹配度提高到原來(lái)的兩倍,晶圓面積就是原來(lái)的四倍。當(dāng)達(dá)到一定水平后,增加晶圓面積也不能改善輸入失調(diào)電壓,另外增加面積會(huì)直接增加芯片的制造成本。所以,常用的方法是在放大器生產(chǎn)后再進(jìn)行測(cè)試與校準(zhǔn),或者在輸出級(jí)使用斬波等技術(shù)改善放大器的失調(diào)電壓。
圖 2.13 放大器輸入級(jí)電路
如表 2.1 為 ADI 不同種類放大器的失調(diào)電壓范圍,及代表型號(hào)。
表 2.1 多類放大器的失調(diào)電壓范圍和代表型號(hào)
(2)芯片封裝技術(shù)
放大器的封裝類型,通常包括 SOIC、MSOP、LFCSP、SOT-23 幾種,大多數(shù)放大器的封裝不會(huì)影響失調(diào)電壓。如圖 2.14 所示 ADA4528-1 有 MSOP、LFCSP 封裝兩種,失調(diào)電壓的典型值,最大值、最小值沒(méi)有因?yàn)榉庋b而不同,如圖 2.10。
圖 2.14 ADA4528-1 封裝示意圖
但是少數(shù)放大器的封裝技術(shù)會(huì)影響放大器的失調(diào)電壓。如圖 2.2,ADA4077-2 A 級(jí)的 MSOP 封裝芯片的失調(diào)電壓最大值為 90μV,典型值為 50μV。同等條件下 SOIC 封裝的 ADA4077-2 A 級(jí)芯片的失調(diào)電壓最大值為 50μV,典型值為 15μV。兩種封裝失調(diào)電壓的分布也存在明顯區(qū)別,其中 SOIC 封裝的失調(diào)電壓分布相對(duì)集中,如圖 2.15。
圖 2.15 ADA4077-2MSOP 與 SOIC 封裝的失調(diào)電壓分布
注:芯片規(guī)格書(shū)中常見(jiàn) A 級(jí)、B 級(jí)產(chǎn)品,在生產(chǎn)的原材料,制造過(guò)程完全一致,區(qū)別在封裝測(cè)試完成以后,將個(gè)別較好的參數(shù)進(jìn)行標(biāo)記。
綜上,由于半導(dǎo)體工藝所導(dǎo)致失調(diào)電壓是構(gòu)成電路直流誤差的重要影響因素之一。在穩(wěn)定的環(huán)境中,由失調(diào)電壓導(dǎo)致的直流誤差可以進(jìn)行校準(zhǔn),但是失調(diào)電壓漂移所產(chǎn)生影響無(wú)法過(guò)校準(zhǔn)完全消除。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動(dòng)化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計(jì)簡(jiǎn)介
- 如何通過(guò)基本描述找到需要的電容?
技術(shù)文章更多>>
- 混合信號(hào)示波器的原理和應(yīng)用
- 功率器件熱設(shè)計(jì)基礎(chǔ)(十)——功率半導(dǎo)體器件的結(jié)構(gòu)函數(shù)
- JFET 共源共柵提高了電流源性能
- 福耀玻璃曹德旺主席蒞臨深圳傲科指導(dǎo)交流并與傲科達(dá)成戰(zhàn)略合作意向
- 京東工業(yè)元器件自營(yíng)服務(wù)商配套能力再升級(jí) 與廣東芯博通達(dá)成合作
技術(shù)白皮書(shū)下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索