圖1:E模式GaN HEMT等效電路(左)和建議的驅(qū)動(dòng)方案(右)。
氮化鎵晶體管的并聯(lián)配置應(yīng)用
發(fā)布時(shí)間:2021-01-19 責(zé)任編輯:lina
【導(dǎo)讀】在功率變換器應(yīng)用中,寬帶隙(WBG)技術(shù)日益成為傳統(tǒng)硅晶體管的替代產(chǎn)品。在某些細(xì)分市場(chǎng)的應(yīng)用場(chǎng)景中,提升效率極限一或兩個(gè)百分點(diǎn)依然關(guān)系重大,變換器功率密度的提高可以提供更多應(yīng)用優(yōu)勢(shì),在這種情況下采用基于氮化鎵(GaN)晶體管的解決方案意義重大。
引言
在功率變換器應(yīng)用中,寬帶隙(WBG)技術(shù)日益成為傳統(tǒng)硅晶體管的替代產(chǎn)品。在某些細(xì)分市場(chǎng)的應(yīng)用場(chǎng)景中,提升效率極限一或兩個(gè)百分點(diǎn)依然關(guān)系重大,變換器功率密度的提高可以提供更多應(yīng)用優(yōu)勢(shì),在這種情況下采用基于氮化鎵(GaN)晶體管的解決方案意義重大。與傳統(tǒng)硅器件相類似,GaN晶體管單位裸片面積同樣受實(shí)際生產(chǎn)工藝限制,單個(gè)器件的電流處理能力存在上限。為了增大輸出功率,并聯(lián)配置晶體管已成為設(shè)計(jì)工程師可以考慮的選項(xiàng)之一。應(yīng)用晶體管并聯(lián)技術(shù)在最大限度提升變換器輸出功率的同時(shí),也帶來(lái)了電路設(shè)計(jì)層面的挑戰(zhàn)。
并聯(lián)晶體管的設(shè)計(jì)挑戰(zhàn)
在應(yīng)用晶體管并聯(lián)技術(shù)時(shí),首先需要考慮的是并聯(lián)晶體管的通態(tài)電阻(RDS(on))。理想情況下,所選器件應(yīng)均勻匹配,以確保靜態(tài)電流在并聯(lián)晶體管之間平均分配。其次,在動(dòng)態(tài)開(kāi)關(guān)過(guò)程中,如果晶體管柵極缺乏對(duì)稱性,不僅會(huì)導(dǎo)致流經(jīng)晶體管的電流分配不平衡,動(dòng)態(tài)電流和電路寄生參數(shù)將會(huì)導(dǎo)致高頻振蕩電壓。如果這些無(wú)法解決這些問(wèn)題,將可能導(dǎo)致晶體管損壞。
盡管傳統(tǒng)硅晶體管的并聯(lián)配置技術(shù)已經(jīng)十分成熟,但對(duì)于GaN器件并聯(lián)技術(shù)研究還鮮有涉及。考慮到GaN器件驅(qū)動(dòng)的特殊性以及其高速開(kāi)關(guān)特性,我們將首先從GaN器件驅(qū)動(dòng)電路設(shè)計(jì)開(kāi)始介紹。
正確設(shè)計(jì)驅(qū)動(dòng)電路
諸如英飛凌科技 CoolGaN™600 V HEMT之類的GaN晶體管采用了柵極p型摻雜工藝,這會(huì)將器件的柵極閾值電壓轉(zhuǎn)換為很低的正向電壓(1.0V~1.5V)。該結(jié)構(gòu)中柵極形成的pn結(jié)正向電壓(VF)約為3.0 V,電阻為幾歐姆,與柵極電容CG并聯(lián)。因此,CoolGaN™晶體管驅(qū)動(dòng)電路與傳統(tǒng)硅晶體管存在很大差異。柵極驅(qū)動(dòng)過(guò)程中,一旦達(dá)到Miller平臺(tái),柵極電壓就被鉗位到接近VF的值,這意味著在硬開(kāi)關(guān)應(yīng)用中需要負(fù)電壓來(lái)關(guān)斷晶體管。同時(shí),CoolGaN™ 器件在穩(wěn)態(tài)導(dǎo)通狀態(tài)和開(kāi)關(guān)瞬態(tài)所需驅(qū)動(dòng)也有所不同。
針對(duì)CoolGaN™晶體管特性設(shè)計(jì)的柵極驅(qū)動(dòng)電路如圖1所示。為確保柵極驅(qū)動(dòng)正常,驅(qū)動(dòng)電壓VS的峰值需要超過(guò)VF的兩倍(通常使用8V~10V),通過(guò)Ron提供了一條瞬態(tài)低阻抗高速AC路徑來(lái)為Con和CGS充電,然后通過(guò)RSS形成一條并聯(lián)的穩(wěn)態(tài)DC路徑。因此,柵極導(dǎo)通瞬態(tài)電流由Ron決定,而RSS決定穩(wěn)態(tài)二極管電流。
在柵極關(guān)斷時(shí),CGS和Con中的電荷將快速達(dá)到平衡。此處必須確保Con大于CGS,以確保穩(wěn)態(tài)的電荷差使柵極電壓VG變?yōu)樨?fù)值,從而在硬開(kāi)關(guān)應(yīng)用中關(guān)斷晶體管。
圖1:E模式GaN HEMT等效電路(左)和建議的驅(qū)動(dòng)方案(右)。
當(dāng)并聯(lián)配置CoolGaN™晶體管時(shí),可使用相同參數(shù)的RC驅(qū)動(dòng)網(wǎng)絡(luò)分別連接每個(gè)并聯(lián)晶體管,再同時(shí)與傳統(tǒng)硅晶體管的標(biāo)準(zhǔn)驅(qū)動(dòng)器連接。并聯(lián)的幾個(gè)晶體管只需要一個(gè)隔離型驅(qū)動(dòng)器,例如隔離型EiceDRIVER™1EDI20N12AF,使用源極(OUT +)和漏極(OUT-)輸出分別實(shí)現(xiàn)晶體管的導(dǎo)通和關(guān)斷。當(dāng)使用12V隔離電源作為柵極驅(qū)動(dòng)器供電時(shí),EiceDRIVER™內(nèi)部會(huì)將其分為正向驅(qū)動(dòng)電壓和-2.5V反向關(guān)斷電壓這樣可確保驅(qū)動(dòng)電壓不超過(guò)晶體管柵極閾值,并大限度減小反向?qū)〒p耗。即使在低占空比情況下,EiceDRIVER™也可以保持良好的柵極電壓調(diào)節(jié)特性,從而阻止RC驅(qū)動(dòng)網(wǎng)絡(luò)失壓。
電流旁路對(duì)GaN晶體管并聯(lián)配置的影響
即使每個(gè)晶體管都配置獨(dú)立的RC驅(qū)動(dòng)網(wǎng)絡(luò),并聯(lián)晶體管的源極電流仍然存在部分共享路徑,這將會(huì)對(duì)柵極驅(qū)動(dòng)產(chǎn)生影響(見(jiàn)圖2)。理想情況下,所有源極電流都將從漏極流至晶體管源極,但不可避免的一種情況是,部分源極電流會(huì)從開(kāi)爾文源極(Kelvin source)流出。如果這些路徑的阻抗和PCB布線不同,則并聯(lián)的CoolGaN™晶體管柵極回路中的VGS電壓可能會(huì)有所不同,小至幾毫伏的柵極電壓差異會(huì)導(dǎo)致幾安培的不平衡源極電流分流,導(dǎo)致并聯(lián)晶體管之間在開(kāi)關(guān)瞬態(tài)產(chǎn)生劇烈振蕩。
圖2:在CoolGaN™并聯(lián)操作中,開(kāi)爾文源極路徑中的高阻抗可防止發(fā)生嚴(yán)重的振蕩。
共享驅(qū)動(dòng)電流路徑問(wèn)題可以通過(guò)在開(kāi)爾文源極路徑中引入高阻抗共模(CM)電感解決。將共模電感器和一個(gè)1?電阻器配置在柵極和相應(yīng)的Kelvin源極驅(qū)動(dòng)器返回路徑之間,柵極驅(qū)動(dòng)器環(huán)路中將呈現(xiàn)很小的漏感,而并聯(lián)晶體管的柵極共享路徑中將由于兩個(gè)共模電感的存在呈現(xiàn)高阻抗。選擇共模電感需要避免對(duì)柵極驅(qū)動(dòng)器的驅(qū)動(dòng)能力產(chǎn)生影響,圖3所示的SIMetrix仿真結(jié)果清楚顯示了共模電感對(duì)共享驅(qū)動(dòng)電流路徑問(wèn)題的抑制。
圖3:仿真結(jié)果顯示在沒(méi)有共模電感(上)和加入共模電感(下)情況下開(kāi)關(guān)40A電流。
PCB優(yōu)化設(shè)計(jì)
在并聯(lián)配置晶體管時(shí),另一個(gè)普遍關(guān)注的問(wèn)題是PCB中寄生電感和電容(器件布局、PCB布線、多層PCB布局),以及所用器件中寄生電感和電容的影響。對(duì)于CoolGaN™晶體管,關(guān)鍵問(wèn)題是由VGS閾值范圍和晶體管之間RDS(on)差異造成的影響。通過(guò)仿真,在SIMetrix中對(duì)CoolGaN™晶體管進(jìn)行建模分析。仿真模型使用0.9V~1.6V閾值電壓和55mΩ~70mΩ的RDS(on)值的CoolGaN™并聯(lián),同時(shí)對(duì)寄生電感和PCB寄生電容電容進(jìn)行建模。分析結(jié)果表明,并聯(lián)晶體管分流不均僅與所用晶體管之間的RDS(on)差異有關(guān)。在必要情況下,可以通過(guò)進(jìn)行嚴(yán)格器件匹配來(lái)解決。如前文所述,使用CM電感可以避免破壞性的持續(xù)電壓振蕩。然而,遵循良好的元器件布局和PCB布線也是一個(gè)關(guān)鍵因素。電源環(huán)路和柵極驅(qū)動(dòng)環(huán)路必須保持較小且對(duì)稱,同時(shí)還要確保開(kāi)關(guān)節(jié)點(diǎn)的寄生電容盡可能低。
積累實(shí)踐經(jīng)驗(yàn)
了解挑戰(zhàn)及其解決方案的最佳方法是在實(shí)驗(yàn)室進(jìn)行試驗(yàn)。為此,英飛凌開(kāi)發(fā)了并聯(lián)半橋評(píng)估板,其中應(yīng)用了四個(gè)70mΩ IGOT60R070D1 CoolGaN™晶體管。該評(píng)估板遵循了以上介紹的設(shè)計(jì)準(zhǔn)則,可以為評(píng)估和設(shè)計(jì)開(kāi)發(fā)提供了一個(gè)良好的基礎(chǔ)。評(píng)估版還提供了大量測(cè)試點(diǎn)。需要注意的重要一點(diǎn)是,對(duì)于某些測(cè)量點(diǎn),需要高帶寬隔離差分探頭,并且在使用前矯正以確保準(zhǔn)確的波形采集。
通過(guò)連接外置電感,該評(píng)估板可用于降壓或升壓電路(buck circuit or boost circuit)測(cè)試、雙脈沖(double pulse test)測(cè)試以及脈沖寬度調(diào)制(PWM)運(yùn)行。評(píng)估板還適用于數(shù)千瓦功率等級(jí)或高開(kāi)關(guān)頻率至1MHz的軟開(kāi)關(guān)和硬開(kāi)關(guān)應(yīng)用。模塊化設(shè)計(jì)簡(jiǎn)化了測(cè)試配置流程,除了板載100µF,450V的大容量電容之外,額外的連接器允許再增加一個(gè)母線電容。 該組件與另外兩個(gè)高頻旁路電容器一起,確定了450V的輸出或母線電壓等級(jí)。在安裝合適的散熱器、導(dǎo)熱片和風(fēng)扇的情況下,評(píng)估板可在硬開(kāi)關(guān)或軟開(kāi)關(guān)下以高達(dá)28A的連續(xù)電流,或峰值電流70A運(yùn)行。 死區(qū)時(shí)間電路中的電位計(jì)也包括在評(píng)估板內(nèi),可通過(guò)RC網(wǎng)絡(luò)實(shí)現(xiàn)延遲接通,以及通過(guò)二極管實(shí)現(xiàn)無(wú)延遲關(guān)斷。
圖4:并聯(lián)半橋CoolGaN™評(píng)估平臺(tái)。
總結(jié)
盡管硅晶體管并聯(lián)配置已經(jīng)十分成熟,GaN晶體管并聯(lián)配置對(duì)于許多設(shè)計(jì)工程師而言仍然存在挑戰(zhàn),采用不同于傳統(tǒng)硅器件的柵極驅(qū)動(dòng)電路是并聯(lián)配置的關(guān)鍵。由此開(kāi)始,GaN晶體管并聯(lián)配置與硅晶體管相類似,但不完全相同。為保證并聯(lián)晶體管均流,需要在設(shè)計(jì)階段對(duì)PCB布線和器件選型進(jìn)行優(yōu)化。針對(duì)旁路電流對(duì)并聯(lián)GaN晶體管的影響,在柵極和開(kāi)爾文源極路徑中加入合適的共模電感是必不可少的,這將有助于最大限度減小電壓震蕩。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- 是否存在有關(guān) PCB 走線電感的經(jīng)驗(yàn)法則?
- 一文看懂電壓轉(zhuǎn)換的級(jí)聯(lián)和混合概念
- 第12講:三菱電機(jī)高壓SiC芯片技術(shù)
- 準(zhǔn) Z 源逆變器的設(shè)計(jì)
- 貿(mào)澤電子持續(xù)擴(kuò)充工業(yè)自動(dòng)化產(chǎn)品陣容
- 低功耗嵌入式設(shè)計(jì)簡(jiǎn)介
- 如何通過(guò)基本描述找到需要的電容?
技術(shù)文章更多>>
- 混合信號(hào)示波器的原理和應(yīng)用
- 功率器件熱設(shè)計(jì)基礎(chǔ)(十)——功率半導(dǎo)體器件的結(jié)構(gòu)函數(shù)
- JFET 共源共柵提高了電流源性能
- 福耀玻璃曹德旺主席蒞臨深圳傲科指導(dǎo)交流并與傲科達(dá)成戰(zhàn)略合作意向
- 京東工業(yè)元器件自營(yíng)服務(wù)商配套能力再升級(jí) 與廣東芯博通達(dá)成合作
技術(shù)白皮書(shū)下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索