下一代串行數(shù)據(jù)標(biāo)準(zhǔn)采用的高速率已經(jīng)進(jìn)入到微波領(lǐng)域。比如,即將到來的SuperSpeed USB(USB 3.0)通過雙絞線對(duì)線纜傳輸速的率就達(dá)到了5Gb/s。通過連接器和線纜傳輸如此高的速率必須考慮通道的不連續(xù)性引起的失真。為了將失真程度保持在一個(gè)可控的水平,標(biāo)準(zhǔn)規(guī)定了線纜和連接器對(duì)的阻抗和回波損耗。最新的測(cè)量使用S參數(shù)S11表征而且必須歸一化到線纜的90歐姆差分阻抗。
當(dāng)測(cè)量USB 3.0通道的S參數(shù)時(shí),可選的儀器是時(shí)域反射計(jì)或TDR。TDR系統(tǒng)通常往待測(cè)器件注入一個(gè)階躍電壓信號(hào)然后測(cè)量是時(shí)間函數(shù)的反射電壓。差分測(cè)量通過產(chǎn)生極性相反可相對(duì)定時(shí)的階躍電壓對(duì)實(shí)現(xiàn)。這篇文章中談到的都是差分信號(hào)。
反射電壓與發(fā)射器和待測(cè)器件之間的阻抗失配成比例,關(guān)系如下式:
Z0 是源阻抗,ZL(t)是待測(cè)器件的阻抗,r(t)是反射系數(shù),Vr(t)/Vi(t)是入射和發(fā)射電壓的比率。式(1)假設(shè)到待測(cè)器件的源,線纜和連接器都是匹配的,但事實(shí)上這種情況很少見。為了補(bǔ)償線纜和連接器的不理想,參考平面校正(基線校正)通常進(jìn)行開路,短路,負(fù)載校準(zhǔn)。調(diào)整式 (1)可以得到待測(cè)器件的阻抗和時(shí)間(或距離)的函數(shù),所以可以使用校準(zhǔn)過的TDR做阻抗測(cè)量。
圖1展示了USB 3.0 帶有連接器線纜的的阻抗曲線。曲線表明了隨著TDR 階躍信號(hào)在線纜中的行進(jìn)阻抗變化是時(shí)間的函數(shù)。注意軌跡兩頭的阻抗變化,那是由于連接器引起的,當(dāng)使用上升時(shí)間100ps (階躍信號(hào))測(cè)試時(shí)連接器的阻抗規(guī)定是90+/- 7歐。TDR的上升時(shí)間非常重要,因?yàn)樽杩棺兓蚑DR階躍信號(hào)的上升時(shí)間成反比,而規(guī)范規(guī)定的USB 3.0信號(hào)的上升時(shí)間是100 ps,測(cè)量中匹配這個(gè)上升時(shí)間將給出信號(hào)“看到的”阻抗。
Figure 1: Differential impedance vs. time measurement for USB3.0 cable and mated connectors
圖1:USB 3.0帶有連接器線纜的 差分阻抗 vs 時(shí)間 測(cè)量
回波損耗或S11 是頻域的測(cè)量和反射系數(shù)有關(guān)。歸一化(通過反射平面校準(zhǔn) 基線校正)反射系數(shù)的傅里葉變換給出了回波損耗是頻率的函數(shù)。圖2給出了USB 3.0線纜和連接器測(cè)量的結(jié)果。圖中的橫軸表示2GHz/div,范圍是0~20GHz,縱軸表示10dB/div?;夭〒p耗在2GHz大約是15dB,但隨著頻率的增加開始變得越來越小。精細(xì)的空值間隔是由線纜末端的連接器引起的,較大的空值間隔是由于連接器內(nèi)部的阻抗結(jié)構(gòu)決定的。
Figure 2: Differential return loss for USB3.0 cable with mated connectors
圖2: USB 3.0 帶有連接器線纜的差分回波損耗
回波損耗可以參考圖1中線纜和連接器阻抗是90歐而TDR系統(tǒng)差分阻抗是100歐,由于USB 3.0發(fā)射機(jī)阻抗是90歐,這個(gè)不匹配人為地減少了回波損耗。為了正確的表達(dá)回波損耗,將阻抗轉(zhuǎn)化為測(cè)試到的S11 是非常必要的,轉(zhuǎn)換關(guān)系由下式給出。
and (2)
轉(zhuǎn)化可以分為兩步。首先,用特征阻抗是100歐姆的測(cè)試系統(tǒng)得出的復(fù)數(shù)S參數(shù)計(jì)算出復(fù)數(shù)的負(fù)載阻抗。其次,用新的90歐姆參考阻抗計(jì)算出負(fù)載阻抗的S參數(shù)?;夭〒p耗是頻率的函數(shù),所以可以計(jì)算出每個(gè)頻點(diǎn)的S參數(shù)。
舉個(gè)例子,用100歐姆阻抗表征的復(fù)合回波損耗S11 = 0.53 - 0.12J 轉(zhuǎn)換到90歐姆的如下:
式2 用來將圖2中測(cè)到的插損 轉(zhuǎn)換到90歐姆差分阻抗。圖3中的兩個(gè)曲線給出了100歐姆和90歐姆特征阻抗的的回波損耗。
Figure 3: Return loss measured with 100 ohm reference (dotted line) and 90 ohm (solid line) reference
圖3:100 歐姆(虛線)和90歐姆參考(實(shí)線)的回波損耗
USB 3.0 線纜和連接器的差分阻抗可以使用校正的TDR系統(tǒng)測(cè)量插損而得出。通過對(duì)連接到待測(cè)器件的參考平面(基線校正)運(yùn)行開路,短路,負(fù)載進(jìn)行校正。通過簡(jiǎn)單的轉(zhuǎn)換測(cè)試系統(tǒng)和待測(cè)器件之間的不同阻抗進(jìn)行插損補(bǔ)償。
References
參考:
[1] “Time Domain Spectrum Analyzer and "S" Parameter Vector Network Analyzer”, James R. Andrews, Picosecond Pulse Labs application note AN-16a, November 2004
[2] “converting s-parameters from 50-ohm to 75-ohm Impedance”, Dallas Semiconductor/Maxxim application note November 21, 2003
USB 3.0線纜和連接器的阻抗和插損測(cè)試
發(fā)布時(shí)間:2009-09-24 來源:美國(guó)力科
特別推薦
- 協(xié)同創(chuàng)新,助汽車行業(yè)邁向電氣化、自動(dòng)化和互聯(lián)化的未來
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- 用于模擬傳感器的回路供電(兩線)發(fā)射器
- 應(yīng)用于體外除顫器中的電容器
- 將“微型FPGA”集成到8位MCU,是種什么樣的體驗(yàn)?
- 能源、清潔科技和可持續(xù)發(fā)展的未來
- 博瑞集信推出高增益、內(nèi)匹配、單電源供電 | S、C波段驅(qū)動(dòng)放大器系列
技術(shù)文章更多>>
- 探索工業(yè)應(yīng)用中邊緣連接的未來
- 解構(gòu)數(shù)字化轉(zhuǎn)型:從策略到執(zhí)行的全面思考
- 意法半導(dǎo)體基金會(huì):通過數(shù)字統(tǒng)一計(jì)劃彌合數(shù)字鴻溝
- 使用手持頻譜儀搭配高級(jí)軟件:精準(zhǔn)捕獲隱匿射頻信號(hào)
- 為什么超大規(guī)模數(shù)據(jù)中心要選用SiC MOSFET?
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
分頻器
風(fēng)力渦輪機(jī)
風(fēng)能
風(fēng)扇
風(fēng)速風(fēng)向儀
風(fēng)揚(yáng)高科
輔助駕駛系統(tǒng)
輔助設(shè)備
負(fù)荷開關(guān)
復(fù)用器
伽利略定位
干電池
干簧繼電器
感應(yīng)開關(guān)
高頻電感
高通
高通濾波器
隔離變壓器
隔離開關(guān)
個(gè)人保健
工業(yè)電子
工業(yè)控制
工業(yè)連接器
工字型電感
功率表
功率電感
功率電阻
功率放大器
功率管
功率繼電器