為反向極性保護(hù)設(shè)計(jì)一個(gè)電路
發(fā)布時(shí)間:2021-05-11 責(zé)任編輯:wenwei
【導(dǎo)讀】反向極性解決方案被看成是一個(gè)迫不得已、不得不做的事情。例如,在汽車系統(tǒng)中,搭線啟動(dòng)期間,防止電池反接或者電纜反向連接很重要,然而系統(tǒng)設(shè)計(jì)人員也必須忍受反向極性保護(hù)出現(xiàn)時(shí)的功率損耗。通常情況下,一提到防止反向極性情況,工程師的腦海中首先想到的就是二極管。
你是不是覺得有些奇怪,孩子的玩具在裝上電池后不工作,但是當(dāng)你把電池的方向調(diào)過來后,玩具突然就好了?嗯,這就是反向極性電路起到的作用,一個(gè)簡(jiǎn)單的二極管就能使你的孩子開心一整天。
現(xiàn)在,我們?yōu)槭裁床荒軐⒁粋€(gè)二極管用于需要反向極性保護(hù)的所有應(yīng)用呢?傳統(tǒng)二極管上有0.7V的壓降,而二極管上的功率損耗為V x I。想象一個(gè)要求5A電源的應(yīng)用。如果使用一個(gè)肖特基二極管,那么功率損耗大約為3.5W。除了功率耗散,電路中的可用電壓為電源電壓減去二極管壓降。
在工業(yè)和汽車應(yīng)用中,大多數(shù)前端接口要求反向極性保護(hù),而這一保護(hù)功能通常由二極管或MOSFET提供。由于它不需要電荷泵,p通道MOSFET一直用于高電流應(yīng)用。然而,p通道MOSFET的Rds(on) 在低輸入電壓時(shí)變得過高,并且它不能防止反向電流流回到輸入端。為了減少靜態(tài)電流,它還需要額外的電路和信號(hào)將其關(guān)閉。我們?cè)陔S后會(huì)討論p通道MOSFET在使用時(shí)的其它弊端。
那么我們?cè)撊绾问褂靡粋€(gè)簡(jiǎn)單的n通道MOSFET,并確保我們無需任何的額外電路,而且要使其運(yùn)行方式與一個(gè)二極管的運(yùn)行方式完全一樣,而又不產(chǎn)生功率損耗呢?
這時(shí)就有一個(gè)智能二極管控制器出現(xiàn)在我們面前,即LM74610-Q1。由于汽車中的很多電子控制模塊直接連接至汽車電池,所以這款器件在汽車應(yīng)用中越來越受到歡迎。任何一個(gè)連接至電池的模塊需要受到反向電壓保護(hù),而反向電壓是與錯(cuò)誤搭線啟動(dòng)過程相關(guān)的常見問題。圖1中顯示的是一個(gè)針對(duì)汽車前端系統(tǒng)的應(yīng)用電路。LM74610-Q1智能二極管控制器,連同一個(gè)n通道MOSFET和電荷泵電容器,組成了智能二極管解決方案。
圖1:LM74610-Q1智能二極管控制器和n通道MOSFET的典型用例。
對(duì)于那些具有低電流要求的模塊來說,二極管也許更加實(shí)用,而對(duì)于所需電流大于2-3A的模塊,大多數(shù)設(shè)計(jì)人員將使用一個(gè)p通道MOSFET來在反向電壓情況出現(xiàn)時(shí)提供保護(hù)功能。然而,這樣的控制電路比較復(fù)雜,并且高電流p通道MOSFET也比較昂貴,并且會(huì)增加總體系統(tǒng)成本。P通道MOSFET常見的Rds(on) 會(huì)在低輸入電壓時(shí)急劇上升,而這一情況在啟停應(yīng)用中很常見。如圖2所示,實(shí)驗(yàn)室測(cè)試已經(jīng)證明,在低輸入電壓時(shí),p通道MOSFET具有比肖特基二極管更低的熱性能。P通道MOSFET也沒有反向電流切斷,從而在電壓中斷、熱啟動(dòng)、冷啟動(dòng)和啟停情況等典型汽車條件導(dǎo)致的任何輸入下降期間,攫取大量的電容器電壓。
圖2:智能二極管控制器(加上n通道MOSFET)與p通道MOSFET的性能比較圖。
ORing應(yīng)用也需要二極管或MOSFET。汽車領(lǐng)域最近的一個(gè)趨勢(shì)就是使用冗余電池連接—通常為兩條已安裝保險(xiǎn)裝置的電源路徑—將這兩條電源路徑置于針對(duì)安全關(guān)鍵應(yīng)用的模塊之中。緊急呼叫系統(tǒng) (E-call) 盒子包含用于正常運(yùn)行的汽車電池的冗余電源,以及一個(gè)備用應(yīng)急電池,以應(yīng)對(duì)主電池連接脫離的情況。
低電流模塊通常將二極管用于ORing。高電流ORing應(yīng)用需要更加復(fù)雜的電路,其中具有很多相關(guān)的分立式組件和大型多引腳封裝。汽車和工業(yè)應(yīng)用很重視可靠性,從而使設(shè)計(jì)人員盡可能地減少組件和引腳數(shù)量,以降低故障率。
在需要低靜態(tài)電流流耗的應(yīng)用中,針對(duì)輸入保護(hù)的以接地為基準(zhǔn)的設(shè)計(jì)方案并不那么實(shí)用。汽車排放標(biāo)準(zhǔn)和車輛中數(shù)量越來越多的電子模塊已經(jīng)對(duì)關(guān)閉和接通狀態(tài)下的電流提出了更加嚴(yán)格的預(yù)算要求。通常情況下,每個(gè)電子模塊的關(guān)閉狀態(tài)可以低至100µA。這也是我們?cè)诎哑囃T跈C(jī)場(chǎng)長(zhǎng)達(dá)2個(gè)星期之后仍然能夠啟動(dòng)車輛的原因。
LM74610-Q1,連同一個(gè)n通道MOSFET能夠更好地滿足低靜態(tài)電流的要求。它提供與二極管相類似的反向極性保護(hù),以及在正常極性條件下,類似于MOSFET的性能。由于這個(gè)器件無需任何控制信號(hào),LM76410-Q1模擬一個(gè)雙端子器件,并且不是以接地為基準(zhǔn)的。
這個(gè)不以接地為基準(zhǔn)的主要優(yōu)勢(shì)在與,LM76410-Q1消耗的靜態(tài)電流為零。當(dāng)施加反向電壓時(shí),MOSFET的體二極管并未接通,所以它也不會(huì)接通LM74610-Q1。當(dāng)施加一個(gè)正常的極性電壓時(shí),這個(gè)體二極管導(dǎo)電,內(nèi)部電荷泵電路以二極管的電壓?jiǎn)?dòng),并且生成使MOSFET接通的電壓。MOSFET定期(在1%的占空比時(shí))關(guān)閉,以重新裝滿電荷泵。一個(gè)受保護(hù)電路將在98%占空比上,以固定的時(shí)間間隔出現(xiàn)一個(gè)0.6V的壓降。在將一個(gè)2.2µF電容器用作電荷泵電容器時(shí),MOSFET每隔2.6s一次性關(guān)閉大約50ms。圖3顯示的是LM74610-Q1的方框圖。
圖3:LM74610-Q1方框圖
二極管的一個(gè)固有屬性就是阻斷反向電壓,并且不讓反向電流流過。智能二極管控制器模擬了這個(gè)運(yùn)行方式,并且在反向電流期間具有極快速的關(guān)閉時(shí)間(通常為2µs)。按照ISO7637,阻斷反向電壓是通過汽車應(yīng)用測(cè)試的一項(xiàng)重要特性。ISO7637技術(shù)規(guī)格要求,在由12電源供電運(yùn)行時(shí),電子模塊對(duì)于負(fù)電壓脈沖的影響要做出動(dòng)態(tài)地響應(yīng)。
對(duì)于反向電壓的慢速響應(yīng)會(huì)導(dǎo)致輸出在脈沖期間變?yōu)樨?fù)值,或者嚴(yán)重放電。如果輸出變?yōu)樨?fù)值或者電容器嚴(yán)重放電,那么下游電子元器件就有可能被損壞。為了防止嚴(yán)重放電,可以使用更大的大容量電容器,不過這需要更多的電路板空間,成本也會(huì)更高。實(shí)驗(yàn)室測(cè)試也已經(jīng)證明,智能二極管控制器要比一個(gè)p通道MOSFET的結(jié)構(gòu)快很多。圖4顯示的是對(duì)于反向極性的快速操作相應(yīng),并且如圖5所示,由于使用了一個(gè)小型4.7uF輸出電容器,它能夠滿足ISO7637脈沖1的要求。
圖4:LM74610-Q1對(duì)于反向電壓的響應(yīng)時(shí)間。
圖5:智能二極管控制器解決方案—采用4.7uF輸出電容器時(shí)的ISO脈沖1。
圖6:針對(duì)智能二極管實(shí)現(xiàn)方式的小外形尺寸 (8mm x 12mm)。
LM74610-Q1智能二極管控制器和一個(gè)n通道MOSFET組合在一起,形成了一個(gè)高效的汽車和工業(yè)前端反向極性結(jié)構(gòu),并且能夠從低電流擴(kuò)展至非常高的電流。圖6顯示的是可以實(shí)現(xiàn)的,用于100W解決方案的小外形尺寸 (117mm2),它的尺寸大約為D2PAK二極管尺寸(180mm2)的60%。
其它資源:
● 在你的下一個(gè)設(shè)計(jì)中考慮使用LM74610-Q1智能二極管控制器。
● 使用LM74610-Q1 SPICE模型來分析你的智能二極管控制器設(shè)計(jì)。
● 下載一個(gè)參考設(shè)計(jì),并且加快產(chǎn)品的上市時(shí)間:
○ 針對(duì)具有所需汽車保護(hù)功能的30W ADAS系統(tǒng)的系統(tǒng)級(jí)參考設(shè)計(jì)
○ 針對(duì)具有所需汽車保護(hù)功能的20W ADAS系統(tǒng)的系統(tǒng)級(jí)參考設(shè)計(jì)
○ 針對(duì)基于低功耗TDA3x的系統(tǒng)的汽車電源參考設(shè)計(jì)
○ 完整的前端汽車類反向極性和串聯(lián)故障保護(hù)參考設(shè)計(jì)
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- 協(xié)同創(chuàng)新,助汽車行業(yè)邁向電氣化、自動(dòng)化和互聯(lián)化的未來
- 功率器件熱設(shè)計(jì)基礎(chǔ)(八)——利用瞬態(tài)熱阻計(jì)算二極管浪涌電流
- 用于模擬傳感器的回路供電(兩線)發(fā)射器
- 應(yīng)用于體外除顫器中的電容器
- 將“微型FPGA”集成到8位MCU,是種什么樣的體驗(yàn)?
- 能源、清潔科技和可持續(xù)發(fā)展的未來
- 博瑞集信推出高增益、內(nèi)匹配、單電源供電 | S、C波段驅(qū)動(dòng)放大器系列
技術(shù)文章更多>>
- 探索工業(yè)應(yīng)用中邊緣連接的未來
- 解構(gòu)數(shù)字化轉(zhuǎn)型:從策略到執(zhí)行的全面思考
- 意法半導(dǎo)體基金會(huì):通過數(shù)字統(tǒng)一計(jì)劃彌合數(shù)字鴻溝
- 使用手持頻譜儀搭配高級(jí)軟件:精準(zhǔn)捕獲隱匿射頻信號(hào)
- 為什么超大規(guī)模數(shù)據(jù)中心要選用SiC MOSFET?
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
分頻器
風(fēng)力渦輪機(jī)
風(fēng)能
風(fēng)扇
風(fēng)速風(fēng)向儀
風(fēng)揚(yáng)高科
輔助駕駛系統(tǒng)
輔助設(shè)備
負(fù)荷開關(guān)
復(fù)用器
伽利略定位
干電池
干簧繼電器
感應(yīng)開關(guān)
高頻電感
高通
高通濾波器
隔離變壓器
隔離開關(guān)
個(gè)人保健
工業(yè)電子
工業(yè)控制
工業(yè)連接器
工字型電感
功率表
功率電感
功率電阻
功率放大器
功率管
功率繼電器