亚洲人成网址在线播放,狠狠久久噜噜熟女,十八禁污污污男女午夜网站,国产精品亚洲精品日韩已方 99热免费在线观看_久久99中文字幕久久_久久激情五月丁香无码伊人_欧美久久久久久又粗又大

你的位置:首頁 > 電源管理 > 正文

如何解決電源噪聲問題?

發(fā)布時間:2020-09-01 來源:北京迪浩 責(zé)任編輯:wenwei

【導(dǎo)讀】電源完整性設(shè)計的水平直接影響著系統(tǒng)的性能,如整機(jī)可靠性、信噪比與誤碼率及EMI/EMC等重要指標(biāo)。板級電源通道阻抗過高和同步開關(guān)噪聲SSN過大會帶來嚴(yán)重的電源完整性問題,這些會給器件及系統(tǒng)工作穩(wěn)定性帶來致命的影響。PI設(shè)計就是通過合理的平面電容、分立電容、平面分割應(yīng)用確保板級電源通道阻抗?jié)M足要求,確保板級電源質(zhì)量符合器件及產(chǎn)品要求,確保信號質(zhì)量及器件、產(chǎn)品穩(wěn)定工作。
 
電源噪聲問題
 
隨著超大規(guī)模集成電路工藝的發(fā)展,芯片工作電壓越來越低,而工作速度越來越快,功耗越來越大,單板的密度也越來越高,因此對電源供應(yīng)系統(tǒng)在整個工作頻帶內(nèi)的穩(wěn)定性提出了更高的要求。電源完整性設(shè)計的水平直接影響著系統(tǒng)的性能,如整機(jī)可靠性、信噪比與誤碼率及EMI/EMC等重要指標(biāo)。板級電源通道阻抗過高和同步開關(guān)噪聲SSN過大會帶來嚴(yán)重的電源完整性問題,這些會給器件及系統(tǒng)工作穩(wěn)定性帶來致命的影響。PI設(shè)計就是通過合理的平面電容、分立電容、平面分割應(yīng)用確保板級電源通道阻抗?jié)M足要求,確保板級電源質(zhì)量符合器件及產(chǎn)品要求,確保信號質(zhì)量及器件、產(chǎn)品穩(wěn)定工作。
 
芯片內(nèi)部有成千上萬個晶體管,這些晶體管組成內(nèi)部的門電路、組合邏輯、寄存器、計數(shù)器、延遲線、狀態(tài)機(jī)、以及其他邏輯功能。隨著芯片的集成度越來越高,內(nèi)部晶體管數(shù)量越來越大。芯片的外部引腳數(shù)量有限,為每一個晶體管提供單獨(dú)的供電引腳是不現(xiàn)實(shí)的。芯片的外部電源引腳提供給內(nèi)部晶體管一個公共的供電節(jié)點(diǎn),因此內(nèi)部晶體管狀態(tài)的轉(zhuǎn)換必然引起電源噪聲在芯片內(nèi)部的傳遞。
 
對內(nèi)部各個晶體管的操作通常由內(nèi)核時鐘或片內(nèi)外設(shè)時鐘同步,但是由于內(nèi)部延時的差別,各個晶體管的狀態(tài)轉(zhuǎn)換不可能是嚴(yán)格同步的,當(dāng)某些晶體管已經(jīng)完成了狀態(tài)轉(zhuǎn)換,另一些晶體管可能仍處于轉(zhuǎn)換過程中。芯片內(nèi)部處于高電平的門電路會把電源噪聲傳遞到其他門電路的輸入部分。如果接受電源噪聲的門電路此時處于電平轉(zhuǎn)換的不定態(tài)區(qū)域,那么電源噪聲可能會被放大,并在門電路的輸出端產(chǎn)生矩形脈沖干擾,進(jìn)而引起電路的邏輯錯誤。芯片外部電源引腳處的噪聲通過內(nèi)部門電路的傳播,還可能會觸發(fā)內(nèi)部寄存器產(chǎn)生狀態(tài)轉(zhuǎn)換。
 
除了對芯片本身工作狀態(tài)產(chǎn)生影響外,電源噪聲還會對其他部分產(chǎn)生影響。比如電源噪聲會影響晶振、PLL、DLL的抖動特性,AD轉(zhuǎn)換電路的轉(zhuǎn)換精度等。
 
電源噪聲來源
 
絕大多數(shù)芯片都會給出一個正常工作的電壓范圍,這個值通常是±5%。例如:對于3.3V電壓,為滿足芯片正常工作,供電電壓在3.13V到3.47V之間,或3.3V±165mV。對于1.2V電壓,為滿足芯片正常工作,供電電壓在1.14V到1.26V之間,或1.2V±60mV。這些限制可以在芯片datasheet中查到。這些限制要考慮兩個部分,第一是穩(wěn)壓芯片的直流輸出誤差,第二是電源噪聲的峰值幅度。
 
電源系統(tǒng)的噪聲來源有三個方面:
 
第一,穩(wěn)壓電源芯片本身的輸出并不是恒定的,會有一定的波紋。這是由穩(wěn)壓芯片自身決定的,一旦選好了穩(wěn)壓電源芯片,對這部分噪聲我們只能接受,無法控制。
 
第二,穩(wěn)壓電源無法實(shí)時響應(yīng)負(fù)載對于電流需求的快速變化。穩(wěn)壓電源芯片通過感知其輸出電壓的變化,調(diào)整其輸出電流,從而把輸出電壓調(diào)整回額定輸出值。多數(shù)常用的穩(wěn)壓源調(diào)整電壓的時間在毫秒到微秒量級。因此,對于負(fù)載電流變化頻率在直流到幾百KHz之間時,穩(wěn)壓源可以很好的做出調(diào)整,保持輸出電壓的穩(wěn)定。當(dāng)負(fù)載瞬態(tài)電流變化頻率超出這一范圍時,穩(wěn)壓源的電壓輸出會出現(xiàn)跌落,從而產(chǎn)生電源噪聲?,F(xiàn)在,微處理器的內(nèi)核及外設(shè)的時鐘頻率已經(jīng)超過了600兆赫茲,內(nèi)部晶體管電平轉(zhuǎn)換時間下降到800皮秒以下。這要求電源分配系統(tǒng)必須在直流到1GHz范圍內(nèi)都能快速響應(yīng)負(fù)載電流的變化,但現(xiàn)有穩(wěn)壓電源芯片不可能滿足這一苛刻要求。我們只能用其他方法補(bǔ)償穩(wěn)壓源這一不足,這涉及到后面要講的電源去耦。
 
第三,負(fù)載瞬態(tài)電流在電源路徑阻抗和地路徑阻抗上產(chǎn)生的壓降。PCB板上任何電氣路徑不可避免的會存在阻抗,不論是完整的電源平面還是電源引線。對于多層板,通常提供一個完整的電源平面和地平面,穩(wěn)壓電源輸出首先接入電源平面,供電電流流經(jīng)電源平面,到達(dá)負(fù)載電源引腳。地路徑和電源路徑類似,只不過電流路徑變成了地平面。完整平面的阻抗很低,但確實(shí)存在。如果不使用平面而使用引線,那么路徑上的阻抗會更高。另外,引腳及焊盤本身也會有寄生電感存在,瞬態(tài)電流流經(jīng)此路徑必然產(chǎn)生壓降,因此負(fù)載芯片電源引腳處的電壓會隨著瞬態(tài)電流的變化而波動,這就是阻抗產(chǎn)生的電源噪聲。在電源路徑表現(xiàn)為負(fù)載芯片電源引腳處的電壓軌道塌陷,在地路徑表現(xiàn)為負(fù)載芯片地引腳處的電位和參考地電位不同(注意,這和地彈不同,地彈是指芯片內(nèi)部參考地電位相對于板級參考地電位的跳變)。
 
如何解決電源噪聲-電容去耦
 
采用電容去耦是解決電源噪聲問題的主要方法。這種方法對提高瞬態(tài)電流的響應(yīng)速度,降低電源分配系統(tǒng)的阻抗都非常有效。
 
對于電容去耦,很多資料中都有涉及,但是闡述的角度不同。有些是從局部電荷存儲(即儲能)的角度來說明,有些是從電源分配系統(tǒng)的阻抗的角度來說明,還有些資料的說明更為混亂,一會提儲能,一會提阻抗,因此很多人在看資料的時候感到有些迷惑。其實(shí),這兩種提法,本質(zhì)上是相同的,只不過看待問題的視角不同而已。為了讓大家有個清楚的認(rèn)識,介紹一下這兩種解釋。
 
(1)從儲能角度看電容去耦
 
在制作電路板時,通常會在負(fù)載芯片周圍放置很多電容,這些電容就起到電源去耦作用。
 
如何解決電源噪聲問題?
 
負(fù)載電流不變時,其電流由穩(wěn)壓電源部分提供,即圖中的I0,方向如圖所示。此時電容兩端電壓與負(fù)載兩端電壓一致,電流Ic為0,電容兩端存儲相當(dāng)數(shù)量的電荷,其電荷數(shù)量和電容量有關(guān)。當(dāng)負(fù)載瞬態(tài)電流發(fā)生變化時,由于負(fù)載芯片內(nèi)部晶體管電平轉(zhuǎn)換速度極快,必須在極短的時間內(nèi)為負(fù)載芯片提供足夠的電流。但是穩(wěn)壓電源無法很快響應(yīng)負(fù)載電流的變化,因此,電流I0不會馬上滿足負(fù)載瞬態(tài)電流要求,因此負(fù)載芯片電壓會降低。但是由于電容電壓與負(fù)載電壓相同,因此電容兩端存在電壓變化。對于電容來說電壓變化必然產(chǎn)生電流,此時電容對負(fù)載放電,電流Ic不再為0,為負(fù)載芯片提供電流。根據(jù)電容等式:
 
如何解決電源噪聲問題?
 
要電容量C足夠大,只需很小的電壓變化,電容就可以提供足夠大的電流,滿足負(fù)載瞬態(tài)電流的要求。這樣就保證了負(fù)載芯片電壓的變化在容許的范圍內(nèi)。這里,相當(dāng)于電容預(yù)先存儲了一部分電能,在負(fù)載需要的時候釋放出來,即電容是儲能元件。儲能電容的存在使負(fù)載消耗的能量得到快速補(bǔ)充,因此保證了負(fù)載兩端電壓不至于有太大變化,此時電容擔(dān)負(fù)的是局部電源的角色。
 
從儲能的角度來理解電源去耦,非常直觀易懂,但是對電路設(shè)計幫助不大。從阻抗的角度理解電容去耦,能讓我們設(shè)計電路時有章可循。實(shí)際上,在決定電源分配系統(tǒng)的去耦電容量的時候,用的就是阻抗的概念。
 
(2)從阻抗角度看電容去耦
 
如何解決電源噪聲問題?
 
將圖中的負(fù)載芯片拿掉,從AB兩點(diǎn)向左看過去,穩(wěn)壓電源以及電容去耦系統(tǒng)一起,可以看成一個復(fù)合的電源系統(tǒng)。這個電源系統(tǒng)的特點(diǎn)是:不論AB兩點(diǎn)間負(fù)載瞬態(tài)電流如何變化,都能保證AB兩點(diǎn)間的電壓保持穩(wěn)定,即AB兩點(diǎn)間電壓變化很小。
 
我們可以用一個等效電源模型表示上面這個復(fù)合的電源系統(tǒng),如下圖所示。
 
如何解決電源噪聲問題?
 
對于這個電路可寫出如下等式;
 
如何解決電源噪聲問題?
 
總結(jié)
 
我們的最終設(shè)計目標(biāo)是,不論AB兩點(diǎn)間負(fù)載瞬態(tài)電流如何變化,都要保持AB兩點(diǎn)間電壓變化范圍很小,根據(jù)公式,這個要求等效于電源系統(tǒng)的阻抗Z要足夠低。在圖中,我們是通過去耦電容來達(dá)到這一要求的,因此從等效的角度出發(fā),可以說去耦電容降低了電源系統(tǒng)的阻抗。另一方面,從電路原理的角度來說,可得到同樣結(jié)論。電容對于交流信號呈現(xiàn)低阻抗特性,因此加入電容,實(shí)際上也確實(shí)降低了電源系統(tǒng)的交流阻抗。
 
從阻抗的角度理解電容去耦,可以給我們設(shè)計電源分配系統(tǒng)帶來極大的方便。實(shí)際上,電源分配系統(tǒng)設(shè)計的最根本的原則就是使阻抗最小。最有效的設(shè)計方法就是在這個原則指導(dǎo)下產(chǎn)生的。
 
 
推薦閱讀:
 
不檢測輸入電壓可以實(shí)現(xiàn)“功率系數(shù)校正”嗎?
BCI大電流注入測試
每個工程師都應(yīng)了解的有關(guān)IEEE 802.3bt PoE的知識
設(shè)計成功的反向降壓-升壓轉(zhuǎn)換器布局
長時間工作的電源是否還能穩(wěn)定運(yùn)行?
要采購晶體么,點(diǎn)這里了解一下價格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉