【導(dǎo)讀】工業(yè)電機(jī)驅(qū)動(dòng)中使用的電子控制必須能在惡劣的電氣 環(huán)境中提供較高的系統(tǒng)性能。電源電路會(huì)在電機(jī)繞組上導(dǎo)致電壓沿激增現(xiàn)象,而這些電壓沿則可以電容耦合進(jìn)低電壓電路之中。電源電路中,電源開關(guān)和寄生元件的非理想行為也會(huì)產(chǎn)生感性耦合噪聲??刂齐娐放c電機(jī)和傳感器之間的長(zhǎng)電纜形成多種路徑,可將噪聲耦合到控制反饋信號(hào)中。高性能驅(qū)動(dòng)器需要必須與高噪聲電源電路隔離開的高保真反饋控制和信號(hào)。
在典型的驅(qū)動(dòng)系統(tǒng)中,包括隔離柵極驅(qū)動(dòng)信號(hào),以便將逆變器、電流和位置反饋信號(hào)驅(qū)動(dòng)到電機(jī)控制器,以 及隔離各子系統(tǒng)之間的通信信號(hào)。實(shí)現(xiàn)信號(hào)隔離時(shí),不得犧牲信號(hào)路徑的帶寬,也不得顯著增加系統(tǒng)成本。光耦合器是跨越隔離柵實(shí)現(xiàn)安全隔離的傳統(tǒng)方法。盡管光耦合器已使用數(shù)十年,其不足也會(huì)影響系統(tǒng)級(jí)性能。
變速電機(jī)驅(qū)動(dòng)器在工業(yè)應(yīng)用中的廣泛使用 要?dú)w功于高效電源開關(guān)和具有成本優(yōu)勢(shì) 的電子控制電路。設(shè)計(jì)上的困難則是用 低壓控制電路耦合高功率開關(guān)電路,而不犧牲抗噪性能 或開關(guān)速度。
現(xiàn)代開關(guān)逆變器的效率一般超過95%,所用功率晶體管 開關(guān)還可連接高壓直流軌高軌與低軌之間的電機(jī)繞組。 這一過程可以減少逆變器的損耗,因?yàn)楣β示w管工作 于完全飽和模式下,而該模式會(huì)降低傳導(dǎo)時(shí)的壓降和功 率損耗。開關(guān)過程中還存在額外的功率晶體管損耗,因 為在此期間,晶體管上有一較大的電壓,與此同時(shí),負(fù) 載電流在高、低功率設(shè)備之間進(jìn)行切換。功率半導(dǎo)體公 司設(shè)計(jì)出IGBT之類開關(guān)時(shí)間較短的晶體管,以減少這 種開關(guān)功率損耗。然而,這種較高的開關(guān)速度也會(huì)帶來(lái) 一些無(wú)用的副作用,比如開關(guān)噪聲增加。
在驅(qū)動(dòng)器控制端,VLSI工藝的持續(xù)進(jìn)步改善了混合信號(hào) 控制電路的成本和性能,為高級(jí)數(shù)字控制算法的廣泛應(yīng) 用以及交流電機(jī)效率的提高創(chuàng)造了條件。提升性能付出 的代價(jià)是IC工作電壓從12 V至5 V降低至現(xiàn)在的3.3 V, 結(jié)果提高了對(duì)噪聲的靈敏度。這種傳統(tǒng)的噪聲過濾方法 通常不太適用,因?yàn)橥枰S持驅(qū)動(dòng)系統(tǒng)的帶寬,而 帶寬一般都是一個(gè)關(guān)鍵的性能參數(shù)。
電機(jī)驅(qū)動(dòng)逆變器環(huán)境
三相逆變器是一種功率電子開關(guān)電路,控制功率從直流 供電軌到三個(gè)交流電機(jī)繞組的流動(dòng)。逆變器有三條相同 的腿,每條腿包括兩個(gè)IGBT晶體管和兩個(gè)二極管,如 圖1所示。每個(gè)電機(jī)繞組均連接至通過分流器連接高端 晶體管和低端晶體管的同一節(jié)點(diǎn)。逆變器使電機(jī)繞組在 直流總線的高壓軌和低壓軌之間切換,以控制平均電 壓。繞組具有極高的電感性,將阻擋電流的變化,因 此,當(dāng)功率晶體管關(guān)閉時(shí),電流將開始在連接至相反電 源軌的二極管中流動(dòng)。這樣,即使逆變器功率設(shè)備和直 流鏈路電容中存在斷續(xù)傳導(dǎo),也會(huì)有電流連續(xù)流到電機(jī) 繞組中。電機(jī)繞組阻抗充當(dāng)來(lái)自逆變器的高壓脈沖寬度 調(diào)制方波輸出電壓的低通濾波器。
圖1. 包括寄生元件的逆變器電路。
將低壓控制電流連接至逆變器時(shí)存在巨大的困難。一個(gè) 基本問題是,高端晶體管發(fā)射器節(jié)點(diǎn)在高壓總線高供電 軌與低供電軌之間切換。首先,高端驅(qū)動(dòng)器必須能夠驅(qū) 動(dòng)相對(duì)于一個(gè)發(fā)射器(可能比共用輸入信號(hào)高300 V或以 上)的柵極信號(hào)。其次,通過分流器(vsh)的電機(jī)電流信 號(hào)必須從300 V或以上的共模電壓中提取出來(lái)。其他問 題將由電源電路中的寄生元件導(dǎo)致。當(dāng)功率晶體管或二 極管的開關(guān)頻率超過1 A/ns時(shí),即使是10 nH的PCB走線 電感也可能導(dǎo)致顯著的電壓(>10 V)。寄生電感和部件電 感會(huì)導(dǎo)致振鈴,結(jié)果使設(shè)備開關(guān)產(chǎn)生的噪聲脈沖的持續(xù) 時(shí)間變長(zhǎng)。甚至電機(jī)電纜的高頻阻抗也可能帶來(lái)問題, 因?yàn)槌鲇诎踩紤],配電板可能離電機(jī)很遠(yuǎn)。其他效應(yīng) 包括噪聲從電機(jī)耦合到反饋傳感器信號(hào)中,其原因是快 速切換的繞組電壓波形。問題將變得更加嚴(yán)重,因?yàn)轵?qū) 動(dòng)電路的功率額定值將增加電路板的物理尺寸,結(jié)果將 進(jìn)一步增加寄生電感,甚至提高電流和電壓開關(guān)速率。
通過隔離控制和電源電路消除噪聲耦合現(xiàn)象,是應(yīng)對(duì)這 一問題的主要工具之一。隔離電路的性能是決定驅(qū)動(dòng)性 能的一個(gè)關(guān)鍵因素。在轉(zhuǎn)軸轉(zhuǎn)動(dòng)時(shí),轉(zhuǎn)軸位置編碼器將 產(chǎn)生頻率為100 kHz或以上的數(shù)字脈沖流。然而,在許 多情況下,編碼器上安裝的電路會(huì)提高設(shè)備的精度,并 使數(shù)據(jù)速率增加到10 Mbps以上。另外,跨越分流器的 反饋信號(hào)也可以隔離,方法是先把數(shù)據(jù)轉(zhuǎn)換成數(shù)字位 流,然后把該位流與低功耗電路隔離開來(lái)。這種情況 下,數(shù)據(jù)速率為10 Mbps至20 Mbps。
柵極驅(qū)動(dòng)電路所需要的開關(guān)性能似乎并不高,因?yàn)殡姍C(jī) 驅(qū)動(dòng)逆變器的開關(guān)速率很少超過20 kHz。然而,需要在 高端設(shè)備和低端設(shè)備的開關(guān)信號(hào)之間插入一個(gè)死區(qū),以 防止發(fā)生直通。死區(qū)為功率開關(guān)的開啟和關(guān)閉延遲以及 隔離電路所致延遲的不確定性的函數(shù)。死區(qū)延長(zhǎng)會(huì)給逆 變器傳遞函數(shù)帶來(lái)更多非線性,結(jié)果將產(chǎn)生無(wú)用的電流 諧波,并可能降低驅(qū)動(dòng)效率。
因此,跨越電源電路和控制電路之間的隔離柵發(fā)送數(shù)據(jù) 的方法不得在開關(guān)過程中帶來(lái)時(shí)序的不確定性,并須具 備較強(qiáng)的抗噪能力。
隔離器技術(shù)傳輸速率比較
隔離不得給整體系統(tǒng)性能帶來(lái)任何顯著的時(shí)序不確定性 或時(shí)序誤差。標(biāo)準(zhǔn)光耦合器的傳播延遲為微秒級(jí),可能 因器件而異,因溫度和壽命而異。光耦合器技術(shù)在時(shí)序 性能方面存在一些根本的不足,而現(xiàn)代數(shù)字隔離器采用 完全不同的運(yùn)算原則,其速率也更高。
可以在有所折衷的情況下增加光耦合器的速率。光耦合 器的工作原理是,將來(lái)自LED的光發(fā)送至一種光學(xué)透明 的隔離材料,并用另一端的光電二極管檢測(cè)光。光耦合 器的速度與光電二極管檢波器的速率以及為其二極管電 容充電的時(shí)間直接相關(guān)。減少傳播延遲的一種方法是增 加發(fā)射的光量。通過提高LED電流,可以使延遲減少2 或3倍,但其代價(jià)是設(shè)備功耗會(huì)增加,每個(gè)數(shù)據(jù)通道最 高將達(dá)50 mW。
圖2. 光耦合器內(nèi)部結(jié)構(gòu)。
提高速度的另一種辦法是通過使用更薄的隔離柵來(lái)減少 光傳輸損耗。為了維持相同的隔離能力,需要增加一層 材料,但代價(jià)是成本也將增高。更快的光耦合器比標(biāo)準(zhǔn) 的低成本光耦合器要貴許多倍。
相反,數(shù)字隔離器則是采用標(biāo)準(zhǔn)的高速CMOS工藝,并 搭載隔離式片內(nèi)微變壓器。其傳輸速率自然比光耦合器 快很多。較高的速度是電路和設(shè)計(jì)與生俱來(lái)的特點(diǎn),不 需要更復(fù)雜、成本更高的隔離材料也可實(shí)現(xiàn)更高的速 度。變壓器可以以最高150 Mbps的傳輸速率傳遞數(shù)據(jù), 傳播延遲低至32 ns,功耗<5 mW,開關(guān)速率為25 kHz或 以上。速度更快的另一個(gè)好處是,通道間的匹配優(yōu)于 5 ns,比標(biāo)準(zhǔn)光耦合器高出了一個(gè)數(shù)量級(jí),僅以大約一 半的單位通道成本即可實(shí)現(xiàn)比光耦合器快3至4倍的卓越 性能。
圖3. 基于變壓器的數(shù)字隔離器的結(jié)構(gòu)。
隔離的抗噪性
在電機(jī)驅(qū)動(dòng)系統(tǒng)中,隔離還提供了一個(gè)分離噪聲源的機(jī) 會(huì),方法是以電流方式將噪聲從功率開關(guān)電路和控制電 路之中隔離開來(lái)。以下各項(xiàng)之間有安全隔離需求:高壓 總線、線路電壓和用戶界面,以同時(shí)保護(hù)人、保護(hù)其他 設(shè)備。還需要在功能上使高端開關(guān)和低端開關(guān)與控制電 路相隔離。隔離元件必須能提供必要的隔離,同時(shí)也需 對(duì)嘈雜環(huán)境不敏感。
衡量隔離器分離地域之間高速噪聲的能力的指標(biāo)一般稱 為共模瞬變抗擾度(CMTI)。CMTI旨在衡量一個(gè)隔離器 在隔離器數(shù)據(jù)通信不被噪聲打斷的情況下,對(duì)隔離柵中 的電壓噪聲的抑制能力。其單位是kV/s瞬變。
電壓瞬變?cè)肼暱缭礁綦x柵的路徑一般是寄生電容跨過隔 離器中的隔離柵。光耦合器的CMTI一般較差,為 15 kV/s。一些現(xiàn)代數(shù)字隔離器采用電容耦合數(shù)據(jù)隔離 技術(shù),其信號(hào)和共模噪聲使用同一路徑?;谧儔浩鞯?隔離器(如ADI的iCoupler數(shù)字隔離器)的信號(hào)路徑不同于 噪聲路徑,其CMTI的值一般為50 kV/s或以上。 隔
隔離材料和可靠性
數(shù)字隔離器采用晶圓CMOS工藝制造,僅限于常用的晶 圓材料。非標(biāo)準(zhǔn)材料會(huì)使生產(chǎn)復(fù)雜化,導(dǎo)致可制造性變 差且成本提高。常用的絕緣材料包括聚合物(如聚酰亞 胺PI,它可以旋涂成薄膜)和二氧化硅(SiO2)。二者均具 有眾所周知的絕緣特性,并且已經(jīng)在標(biāo)準(zhǔn)半導(dǎo)體工藝中 使用多年。聚合物是許多光耦合器的基礎(chǔ),作為高壓絕 緣體具有悠久的歷史。
安全標(biāo)準(zhǔn)通常規(guī)定1分鐘耐壓額定值(典型值2.5 kV rms 至5 kV rms)和工作電壓(典型值125 V rms至400 V rms)。 某些標(biāo)準(zhǔn)也會(huì)規(guī)定更短的持續(xù)時(shí)間、電壓浪涌(如10 kV 峰值并持續(xù)50 μs)作為增強(qiáng)絕緣認(rèn)證的一部分要求。
表1. 隔離材料性能比較
聚 合物/聚酰亞胺隔離器可提供最好的隔離特性(見表1)。 聚酰亞胺數(shù)字隔離器與光耦合器類似,在典型工作電壓 下,工作壽命超過電機(jī),額定使用壽命為50年。SiO2隔 離器的工作壽命與之接近,但是,對(duì)高能浪涌的保護(hù)能 力卻較弱。
在高溫連續(xù)使用的情況下,影響光耦合器壽命的可能不 是隔離材料的分解而是LED磨損。當(dāng)溫度>85°C時(shí),工 作1萬(wàn)小時(shí),光耦合器的電流傳輸比(CTR)將下降10%至 20%。10萬(wàn)小時(shí)時(shí),CTR可能會(huì)下降一半或以上。
集成可能性
光耦合器LED和優(yōu)化的光檢波器不兼容低成本CMOS技 術(shù)。要集成帶去飽和檢測(cè)功能的柵極驅(qū)動(dòng)、用- ADC 實(shí)現(xiàn)隔離電流檢測(cè)以及多向數(shù)據(jù)流等其他功能,就必須 采用多芯片解決方案,結(jié)果將使帶這些功能的光耦合器 變得非常昂貴。采用CMOS技術(shù)和隔離式變壓器的數(shù)字 隔離器可以隨著集成度的提高而自然而然地添加這些功 能。由于變壓器也可用來(lái)發(fā)射隔離功率,因此,可從相 同的封裝發(fā)射高端功率,而無(wú)需會(huì)給某些應(yīng)用帶來(lái)問題 的自舉。目前,市場(chǎng)上有基于變壓器的數(shù)字隔離器,在 單個(gè)封裝中集成了dc/dc轉(zhuǎn)換器、- ADC、柵極驅(qū)動(dòng) 器、I2C、RS-485收發(fā)器、RS-232收發(fā)器和CAN收發(fā) 器,使電機(jī)控制系統(tǒng)同時(shí)實(shí)現(xiàn)了尺寸和成本的優(yōu)化。
實(shí)用的應(yīng)用電路
展示了柵極驅(qū)動(dòng)、通信和反饋信號(hào)隔離的典型驅(qū)動(dòng)電路 如圖4所示。在該系統(tǒng)中,隔離的- ADC用來(lái)測(cè)量電 機(jī)繞組電流,數(shù)字位流則由電機(jī)控制IC上的數(shù)字過濾電 路進(jìn)行處理。位置編碼器包含一個(gè)ASIC,由其通過一 個(gè)隔離式RS-485接口將位置和速度數(shù)據(jù)發(fā)送給電機(jī)控制 IC。其他隔離式串行接口包括連接PFC的I2C接口以及連 接前面板的隔離式RS-232鏈路。在此例中,PWM信號(hào) 與逆變器模塊隔離,IGBT由一個(gè)嵌入該模塊中的電平 轉(zhuǎn)換柵極驅(qū)動(dòng)器驅(qū)動(dòng)。
圖4. 典型的中型工業(yè)電機(jī)驅(qū)動(dòng)系統(tǒng)。
推薦閱讀: