【導(dǎo)讀】近年來,永磁同步電動機(PMSM)在電動車輛、電動飛機、機器人以及家用電器等工業(yè)制造中已經(jīng)得到了越來越廣泛的應(yīng)用。而在永磁同步電機(PMSM)中,最常使用到的一項技術(shù)就是矢量控制,因為它可以實現(xiàn)更好的動態(tài)響應(yīng),充分發(fā)揮機器的潛力。
但若想實現(xiàn)矢量控制,就必須要確定轉(zhuǎn)子的速度和位置。最常用的電機速度和位置測量傳感器有光傳感器和霍爾傳感器。但這兩種傳感器都非常昂貴,會無形增加驅(qū)動系統(tǒng)的成本。
這里跟大家分享一種比較有前景的PMSM驅(qū)動解決方案,它將低成本的磁性角度傳感器與動態(tài)觀測器結(jié)合在一起,同樣也能測量出精確的轉(zhuǎn)子速度。本文為您展示的MPS電機控制模塊就屬于此類解決方案,模塊包含了一個電機控制ASIC、一個磁性角度傳感器、3相MOSFET功率級和PCB預(yù)驅(qū)動器,適用于NEMA 23和NEMA 17 兩種型號的電機產(chǎn)品。
電機控制ASIC為電機驅(qū)動應(yīng)用提供了極好的計算能力。該模塊配合MA702(一款12位分辨率磁性角度傳感器),可以檢測出PMSM電機的絕對位置。MA702的成本要遠(yuǎn)低于光傳感器和霍爾傳感器。由于能夠了解整個過程中轉(zhuǎn)子的位置,所以可以通過建立基于PMSM機械方程的動態(tài)狀態(tài)觀測器來檢測電機速度。ASIC可以使用動態(tài)觀測器過濾掉位置測量所產(chǎn)的白噪音并估計出轉(zhuǎn)子速度,從而在PMSM中使用磁場定向控制。
PMSM磁場定向控制
三相PMSM機械公式可以用方程組(1)表示:
其中v、i和λ分別表示電壓、電流和磁鏈。下標(biāo)a、b和c表示相位a、b和c的變量。下標(biāo)s為定子變量,ρ為特定值導(dǎo)數(shù),P為PMSM的極數(shù)。
電磁轉(zhuǎn)矩T_e由三相電流和轉(zhuǎn)子磁鏈生成。λ_m^’為PMSM定子側(cè)檢測到的轉(zhuǎn)子磁鏈。角度θ_e為轉(zhuǎn)子磁鏈和A相定子之間的電磁角度。
為實現(xiàn)PMSM的FOC功能,需使用q-d下方的動態(tài)模型來解耦氣隙磁鏈和電磁轉(zhuǎn)矩。根據(jù)Clarke-Park變換計算公式,同步旋轉(zhuǎn)q-d軸方程組(1)中的PMSM模型使用方程組(2)計算:
其中下標(biāo)q-d為q-d軸變量。L_為自感系數(shù),L_m為機械互感系數(shù)。為更加簡化控制,轉(zhuǎn)子磁鏈應(yīng)與d-軸對齊,此時q-軸磁鏈則為零。磁鏈?zhǔn)褂梅匠探M(3)計算:
電磁轉(zhuǎn)矩使用公式(4)計算:
根據(jù)方程組(1)、(2)、(3)和(4)的變換步驟,磁鏈可以直接由d軸電流控制。由于i_ds為常量,所以可以直接通過控制q軸電流來控制轉(zhuǎn)矩T_e。如果保持i_ds=0,則電磁轉(zhuǎn)矩直接與i_qs成正比。
由上述推導(dǎo)可以得到圖1中的PMSM FOC原理圖。
圖 1:PMSM FOC 原理圖
首先,對比外回路參考值與測量的反饋值,然后反饋輸入差值至控制器(通常使用PI控制器),從而生成指令轉(zhuǎn)矩電流IQ_ref。根據(jù)磁鏈要求設(shè)置d軸電流參考值ID_ref。電流調(diào)節(jié)器/控制器 VD_ref、VQ_ref、VD_ref和VQ_ref的輸出值是空間矢量PWM(SVPWM)的輸入值。SVPWM塊為變換器生成柵極信號用來驅(qū)動PMSM。
基于無速度傳感器驅(qū)動的動態(tài)觀測器
MA702可以檢測永磁體θ_e的位置。轉(zhuǎn)子的速度可以通過公式ω_e=ρθ_e計算得出。作為一個數(shù)字傳感器,MA702一定會在測量位置產(chǎn)生噪聲。如果直接使用位置差分器獲取電機的速度,則會破壞控制操作。解決這個問題最常見的方法是添加一個數(shù)字濾波器/觀測器。
可以使用方程組(5)基于機械PMSM模型構(gòu)建系統(tǒng)觀測器:
其中,T_e為電磁轉(zhuǎn)矩,T_l為負(fù)載轉(zhuǎn)矩。ω_m和θ_m為機械轉(zhuǎn)子速度和位置,而ω_e和θ_e則為電動轉(zhuǎn)子速度和位置。機械速度和位置乘以P/2等于電氣速度和位置。P為PMSM的極數(shù)。參數(shù)J和B分別表示PMSM的慣性和以及轉(zhuǎn)子與負(fù)載的組合粘性摩擦力。
MA702將絕對轉(zhuǎn)子位置反饋到電機控制ASIC,使機械模型系統(tǒng)矩陣A成為一個簡單的3x3矩陣,僅需兩個非零元素。更簡單的系統(tǒng)矩陣有助于減少MCU的計算負(fù)擔(dān),使算法更容易實現(xiàn),執(zhí)行速度更快。
使用歐拉(Euler)方法將方程組(5)中的PMSM力學(xué)模型離散化。狀態(tài)變量x,∈和R ^ n作為系統(tǒng)過程的狀態(tài),離散時間可以用方程組(6)表示:
其中u是輸入變量,y是輸出測量值。w和v分別表示具有Q和R噪聲方差的過程噪聲和測量噪聲。
根據(jù)經(jīng)典控制理論,具有估計增益 K 的狀態(tài)觀測器可以用等式(7)計算:
(∧) 表示了估計變量。與使用恒定增益 K 經(jīng)典狀態(tài)觀測器不同,動態(tài)觀測器在每次迭代時遞歸地更新其觀測器增益 K 。
與FOC原理圖(參見圖1)相比,基于動態(tài)速度觀測器的驅(qū)動器原理圖使用機器測量作為系統(tǒng)輸入來執(zhí)行觀測器(參見圖2)。動態(tài)觀測器輸出濾波/估計的轉(zhuǎn)子速度。轉(zhuǎn)子位置用于傳導(dǎo)PMSM的FOC。
圖 2:基于 PMSM FOC的動態(tài)觀測器
仿真結(jié)果
使用Matlab/Simulink得出仿真結(jié)果。用于驗證算法的電機是MPS eMotion SystemTM智能電機MMP757094-36。MMP757094-36 是一款適用于伺服電機應(yīng)用的全集成智能電機解決方案系列產(chǎn)品。表1列出了電機參數(shù)。
表 1: 電機參數(shù)
首先,將恒速參考值(500rpm)反饋至系統(tǒng),以說明動態(tài)觀測器在瞬態(tài)期間是如何工作的。
圖3顯示了估計速度如何跟蹤實際電機速度。估計速度和實際速度在大約0.05s后都達(dá)到了穩(wěn)定狀態(tài)。圖4示出了在速度響應(yīng)穩(wěn)定之后,誤差方差矩陣行列式的絕對值下降到零。動態(tài)觀測器增益隨速度的響應(yīng)而變化。在瞬態(tài)周期之后,觀測器的增益K 變?yōu)楹愣ㄔ鲆妗?/div>
圖 3:速度響應(yīng)
圖4:誤差方差和觀測器增益動力學(xué)
實時硬件實驗結(jié)果
為了驗證算法,還測量了實時硬件實驗結(jié)果。電機控制模塊專為NEMA 23 57mm電機設(shè)計,可直接安裝在電機上。
圖5:MPS電機控制模塊(左)和MPS智能電機(右)
如上一節(jié)所述,將MA702角度傳感器采樣的角度反饋到電機控制ASIC的絕對轉(zhuǎn)子位置,使得動態(tài)觀測器的遞歸迭代實現(xiàn)更加容易,并且減少了計算負(fù)擔(dān)。由于測量只是一個變量,而不是經(jīng)過復(fù)雜的矩陣變換,觀測器增益計算變得更簡單。每次迭代,整個動態(tài)觀測器計算的時間不到20μs。
圖6:實時的步進速度響應(yīng)
圖6顯示了從1000rpm到-500rpm的各種速度參考值通過步進變化輸入到仿真系統(tǒng)。動態(tài)觀測器估計的速度仍然可以跟蹤面對不同速度參考步驟的電動機速度。該算法還可以提供靜止參考。
結(jié)論
本文為PMSM FOC提供了一種很有前景的解決方案,它將低成本的磁性角度傳感器和動態(tài)觀測器結(jié)合起來,以估算出準(zhǔn)確的轉(zhuǎn)子速度。該算法使用在MPS的電機控制ASIC中。MA702提供高分辨率的板上角度傳感器,因此該算法避免了高維矩陣逆計算,這大大簡化了代碼開發(fā)和計算的時間。仿真和實時驗證結(jié)果均表明所提出的解決方案具有良好的動態(tài)性能,并且能夠在給定不同速度參考的情況下控制PMSM。
推薦閱讀: